Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16699-16711, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514399

RESUMO

Despite the lower toxicity of water-based lubricants over nonrenewable petroleum-based analogues, they face challenges in achieving widespread adoption due to low stability and inadequate friction-reduction performance. To address this, a cost-effective nanoadditive is synthesized by expansive oxidation of asphaltenes to create biocompatible asphaltene-derived carbon dots [(ACDs); 5 nm]. These ACDs exhibit excellent water redispersibility, promoting long-term friction reduction and marking the first use of an asphaltene-based system for friction reduction in water or oil. Even at low loadings (0.2-4.0 wt %), ACDs significantly reduce friction on steel surfaces (>54%) with tribofilm stability surpassing pristine carbon dots, typical carbon-based graphene quantum dots, and inorganic nanomaterials (commercial 5 and 20 nm silica). The ACDs' attributes include high negative zeta potential, considerable water uptake, varied functional groups, biocompatibility, and a nanodisc shape conducive to stable tribofilm formation through effective particle stacking. The scalable synthesis, high yield, and impressive water redispersibility of ACDs position them favorably for commercial water-based lubrication.

2.
Langmuir ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316141

RESUMO

Electrochemical regeneration of adsorbents presents a cost-effective and environmentally friendly approach. Yet, its application to 3D structured adsorbents such as cellulose/graphene-based aerogels remains largely unexplored. This study introduces a method for producing these aerogels, highlighting their significant adsorption capacity for dissolved organic pollutants and resilience during electrochemical regeneration. By adjusting the ratio of hydrophobized cellulose nanofibers to graphene, the aerogels demonstrate a tunable adsorption capacity, ranging from 56 to 228 mg/g. Hydrophobization using oleic acid is vital for maintaining the aerogels' structural stability in water. Notably, the aerogels maintain structural integrity and efficiency over at least 18 electrochemical regeneration cycles, underscoring their potential for long-term environmental applications. The increase in adsorption capacity observed after regeneration cycles, approximately 10-20% by the fifth cycle, is attributed to electrochemical surface roughening and the creation of new adsorption sites. The tunability and durability of these aerogels offer a sustainable solution for adsorption with electrochemical regeneration technology.

3.
Small ; 20(21): e2306207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161247

RESUMO

Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.


Assuntos
Ácido Hialurônico , Proteoglicanas , Reologia , Líquido Sinovial , Líquido Sinovial/metabolismo , Líquido Sinovial/química , Humanos , Ácido Hialurônico/química , Proteoglicanas/química , Proteoglicanas/metabolismo , Lubrificação , Substâncias Macromoleculares/química , Viscosidade
4.
Environ Sci Technol ; 57(26): 9865-9873, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343244

RESUMO

Operando visualization of interfacial pH is crucial, yet challenging in electrochemical processes. Herein, we report the fabrication and utilization of ratiometric, fluorescent pH-sensitive nanosensors for operando quantification of fast-dynamic, interfacial pH changes in electrochemical processes and environments where unprotected fluorescent dyes would be degraded. Spatio-temporal pH changes were detected using an electrochemically coupled laser scanning confocal microscope (EC-LSCM) during the electrocoagulation treatment of model and field samples of oil-sands-produced water. Operando visualization of interfacial pH provided new insights into the electrode processes, including ion speciation, electrode fouling, and Faradaic efficiency. We provide compelling evidence that formed metal complexes precipitate at the edge of the pH boundary layer and that there is a strong coupling between the thickness of the interfacial pH layer and the electrode fouling. Furthermore, these findings provide a powerful pathway for optimizing the operating conditions, minimizing electrode passivation, and enhancing the efficiency of electrochemical processes, e.g., electrocoagulation, flow batteries, capacitive deionization, and electrolyzes.


Assuntos
Corantes , Complexos de Coordenação , Fontes de Energia Elétrica , Eletrodos , Concentração de Íons de Hidrogênio
5.
Water Res ; 242: 120201, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336184

RESUMO

Anode fouling is one of the key limiting factors to the widespread application of electrocoagulation (EC) for treatment of different types of contaminated water. Promising mitigation strategy to fouling is to operate the process under polarity reversal (PR) instead of direct current (DC). However, the PR operation comes at the cost of process complexity due to the alternation of electrochemical and chemical reactions. In this study, we systematically investigated the link between evolving fouling layer during DC and PR close to iron and aluminum electrodes and morphological and rheological properties of the formed sludge. By operando visualization of EC process, we demonstrate that during PR operation, precipitation of the iron and aluminum species occurs close to the anode interface, resulting in flocs with higher porosity and lower density than those formed under DC conditions. However, rheological investigation revealed that the PR conditions resulted in a sludge with more pronounced solid-like signature, but this enhancement in its viscoelastic properties is closely related to a period of the current's polarity reversal. We attribute this unexpected result to higher shear rate and collision of particles during PR conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Esgotos , Alumínio/química , Eletrocoagulação , Eletricidade , Eletrodos , Ferro
6.
J Colloid Interface Sci ; 645: 560-569, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37163802

RESUMO

HYPOTHESIS: Despite the wide spectrum of available nanoparticles, their utilization in lubricant and grease formulations remains challenging. To enhance their performance, an improved link between the interparticle contacts, brittleness of the resulting particle network, time-dependent rheology and tribology is required. EXPERIMENTS: We systematically changed interparticle contacts and examined their effect on the colloidal stability, microstructure, rheological and tribological behavior of model greases by investigating four types of nanoclays: montmorillonite (Cloisite Na+), oleic-acid functionalized Cloisite Na+ (OA-Cloisite Na+), organomodified montmorillonite (C20A) and oleic-acid functionalized C20A (C20A-OA). FINDINGS: We observed a range of behaviors, starting from the lack of colloidal stability in greases derived with Cloisite Na+ and OA-Cloisite Na+ to semi-solid type systems with C20A and C20A-OA. Consistent with previous studies, the rheological and tribological properties of C20A systems scale with nanoclay loadings. Surprisingly, the functionalized C20A-OA system exhibited a delayed transition towards hydrodynamic lubrication, and enhanced lubrication properties, both of which were largely independent of nanoclay loadings. Coupled microstructural investigation and time-dependent rheology reveal that this behavior is governed by increasing repulsive forces, decreasing inter-particle friction between C20A-OA nanoparticles, and faster reorganization of the C20A-OA nanoparticle network under shear. Increased interparticle repulsion enables C20A-OA nanoclays to pass each other under shear and align in direction of shear, which reduces the overall viscosity, while the presence of OA on nanoclays decreases inter-particle friction and particle-steel surface friction.

7.
J Colloid Interface Sci ; 641: 404-413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940596

RESUMO

Interfacial interactions of nanoparticles (NPs) in colloids are greatly influenced by the NP surface free energy (SFE). Due to the intrinsic physical and chemical heterogeneity of the NP surface, measuring SFE is nontrivial. The use of direct force measurement methods, such as colloidal probe atomic force microscopy (CP-AFM), have been proven to be effective for the determination of SFE on relatively smooth surfaces, but fail to provide reliable measurements for rough surfaces generated by NPs. Here, we developed a reliable approach to determine the SFE of NPs by adopting Persson's contact theory to include the effect of surface roughness on the measurements in CP-AFM experiments. We obtain the SFE for a range of materials varying in surface roughness and surface chemistry. The reliability of the proposed method is verified by the SFE determination of polystyrene. Subsequently, the SFE of bare and functionalized silica, graphene oxide, and reduced graphene oxide were quantified and validity of the results was demonstrated. The presented method unlocks the potential of CP-AFM as a robust and reliable method of the SFE determination of nanoparticles with a heterogeneous surface, which is challenging to obtain with conventionally implemented experimental techniques.

8.
ACS Appl Mater Interfaces ; 15(1): 1996-2008, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36592370

RESUMO

Development of lithium-ion batteries with composite solid polymer electrolytes (CPSEs) has attracted attention due to their higher energy density and improved safety compared to systems utilizing liquid electrolytes. While it is well known that the microstructure of CPSEs affects the ionic conductivity, thermal stability, and mechanical integrity/long-term stability, the bridge between the microscopic and macroscopic scales is still unclear. Herein, we present a systematic investigation of the distribution of TEMPO-oxidized cellulose nanofibrils (t-CNFs) in two different molecular weights of poly(ethylene oxide) (PEO) and its effect on Li+ ion mobility, bulk conductivity, and long-term stability. For the first time, we link local Li-ion mobility at the nanoscale level to the morphology of CPSEs defined by PEO spherulitic growth in the presence of t-CNF. In a low-MW PEO system, spherulites occupy a whole volume of the derived CPSE with t-CNF being incorporated in between lamellas, while their nuclei remain particle-free. In a high-MW PEO system, spherulites are scarce and their growth is arrested in a non-equilibrium cubic shape due to the strong t-CNF network surrounding them. Electrochemical strain microscopy and solid-state 7Li nuclear magnetic resonance spectroscopy confirm that t-CNF does not partake in Li+ ion transport regardless of its distribution within the polymer matrix. Free-standing CSPE films with low-MW PEO have higher conductivity but lack long-term stability due to the existence of uniformly distributed, particle-free, spherulite nuclei, which have very little resistance to Li dendrite growth. On the other hand, high-MW PEO has lower conductivity but demonstrates a highly stable Li cycling response for more than 1000 h at 0.2 mA/cm2 and 65 °C and more than 100 h at 85 °C. The study provides a direct link between the microscopic dynamic, Li-ion transport, bulk mechanical properties and long-term stability of the derived CPSE and, and as such, offers a pathway towards design of robust all-solid-state Li-metal batteries.

9.
ACS Appl Mater Interfaces ; 13(36): 43726-43733, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473464

RESUMO

This work investigates the effect of partially hydrophobic grafted polymers on flocculation and dewatering of oil sands mature fine tailings. Here, we combine confocal microscopy and rheology to investigate how the graft density of ethylene-propylene-diene grafted with hydrolyzed poly(methyl acrylate) (EPDM-g-HPMA) affects its dispersion in water and flocculation efficiency in terms of sediment solids content and long-term dewatering of oil sands tailings. Increasing the graft density from 30 to 50% makes the flocculant easier to disperse, increases the rate of initial dewatering, and also enhances the viscoelastic response of the flocculated sediments. Conversely, the long-term rheological properties of the flocculated sediments were similar for all flocculants. Tri-dimensional microscopic details of the spatial distribution of water within the flocculated sludge provide novel insights into the performance of the flocculants. Increasing the graft density in EPDM-g-HPMA traps more water within the individual flocs and, consequently, decreases the post-flocculation dewatering rate. Our systematic approach confirms the importance of the spatial distribution of water in the flocculated sediment, which depends on how the flocculant is dispersed and how it retains water in the flocs.

10.
Small ; 17(3): e2005564, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350120

RESUMO

The precise control of the ice crystal growth during a freezing process is of essential importance for achieving porous cryogels with desired architectures. The present work reports a systematic study on the achievement of multi-structural cryogels from a binary dispersion containing 50 wt% 2,2,6,6-tetramethylpiperidin-1-oxyl, radical-mediated oxidized cellulose nanofibers (TOCNs), and 50 wt% graphene oxide (GO) via the unidirectional freeze-drying (UDF) approach. It is found that the increase in the sol's pH imparts better dispersion of the two components through increased electrostatic repulsion, while also causing progressively weaker gel networks leading to micro-lamella cryogels from the UDF process. At the pH of 5.2, an optimum between TOCN and GO self-aggregation and dispersion is achieved, leading to the strongest TOCN-GO interactions and their templating into the regular micro-honeycomb structures. A two-faceted mechanism for explaining the cryogel formation is proposed and it is shown that the interplay of the maximized TOCN-GO interactions and the high affinity of the dispersoid complexes for the ice crystals are necessary for obtaining a micro-honeycomb morphology along the freezing direction. Further, by linking the microstructure and rheology of the corresponding precursor sols, a diagram for predicting the microstructure of TOCN-GO cryogels obtained through the UDF process is proposed.

11.
Carbohydr Polym ; 251: 117112, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142649

RESUMO

Exploiting the shape of Pickering stabilizers offers the ability to unlock the full potential of nanoparticle-stabilized emulsions for applications in enhanced oil recovery, pharmaceuticals, cosmetics, and coatings. In this work, we utilize engineered polysaccharide particles derived from the enzymatic polymerization of glucose from sucrose with controlled shape for the stabilization of dodecane-in-water emulsions. Altering the particle shape (spherical aggregates, fibrids, or platelets), while maintaining a neutral surface charge allows for a systematic examination of the role of particle shape in the stabilization of emulsions. We find that platelet-shaped particles reduce the interfacial tension and result in the smallest droplet size, while emulsions stabilized by aggregates and fibrids are governed by a network of particles in the continuous phase. Exploiting the synergy between these particles allowed for the tuning of their microstructure and rheological signature which allows us to map and tailor these emulsions for a wider variety of applications.


Assuntos
Enzimas/metabolismo , Nanopartículas/química , Polissacarídeos/química , Tensoativos/química , Emulsões , Tamanho da Partícula , Polimerização , Água/química
12.
J Colloid Interface Sci ; 571: 194-204, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199272

RESUMO

HYPOTHESIS: Mechanistic understanding of particle-flocculant interactions and its link to the resulting floc structure is essential for developing tailings treatments with enhanced consolidation rates. A noninvasive, in-situ visualization of the floc formation and the consequent sediment microstructure via tri-dimensional laser scanning confocal microscopy (LSCM) can enable establishing the quantitative link between the flocculation conditions and bulk properties of the resulting sediment structures. EXPERIMENTS: A dual fluorescence/reflectance confocal imaging protocol is developed to non-invasively detect morphological changes in dense oil sands tailings during flocculation with an anionic polymer and the subsequent sediment compaction stages for three different polymer dosages. The image reconstruction is developed to quantify the organics/clay volume fractions in the sediment and the floc network characteristics through the pseudo fractal dimension which are related to the bulk rheological properties following a 5-day densification period. FINDINGS: In-situ imaging of the flocculation process gives insights into the variable floc density and size at different stages of mixing. The acquired 3D images of the flocculated sediment reveal that bitumen remains within the flocs. The increase in the polymer dosage results in the reduction of the sediment fractality and strength attributed to the possible formation of more swelled floc structures. Clay reflectance detection is validated using a model kaolinite clay dispersion. The developed methodology may ultimately be used as a guiding tool for standard screening of the new flocculants and flocculation protocols for various mineral tailings systems.

13.
Angew Chem Int Ed Engl ; 58(47): 16815-16819, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31538391

RESUMO

In aqueous electrochemical processes, the pH evolves spatially and temporally, and often dictates the process performance. Herein, a new method for the in-operando monitoring of pH distribution in an electrochemical cell is demonstrated. A combination of pH-sensitive fluorescent dyes, encompassing a wide pH range from ≈1.5 to 8.5, and rapid electrochemically coupled laser scanning confocal microscopy is used to observe pH changes in the cell. Using electrocoagulation as an example process, we show that the method provides new insights into the reaction mechanisms. The pH close to the aluminium electrode surface is influenced by the applied current density, hydrolysis of aluminium cations, and gas evolution. Through quantification of the pH at the anode, along with gas analysis, we find that hydrogen is evolved at the anode due to a non-Faradaic chemical reaction. This leads to increased production of coagulant, which may open new routes to enhance the process performance. This method for in-operando dynamic visualization of pH paves the way for studies of electrochemical processes, including other water treatment, electrosynthesis, and batteries.

14.
J Colloid Interface Sci ; 554: 305-314, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302368

RESUMO

HYPOTHESIS: Understanding and monitoring the film formation of interfacially formed layered films allows for the design of conductive nanocomposite films suitable for strain sensing. EXPERIMENTS: To understand the mechanism of interfacial film formation, the hexane/water interface was monitored during the evaporation process via confocal laser scanning microscopy. Scanning electron microscopy and atomic force microscopy were utilized to investigate final film morphology. Tensile testing was used to determine their mechanical properties under uniaxial strain. FINDINGS: Conductive nanocomposite films were formed at the hexane/water interface. Due to their low colloidal stability in hexane, the Vulcan carbon (VC) nanoparticles settled to the hexane/water interface prior to the onset of paraffin wax precipitation. Consequently, after the evaporation of hexane a two-layer structured film was formed. The bottom (water-facing, VC-rich) layer was conductive due to the existence of a percolated network of nanoparticle aggregates, while the top (hexane facing, paraffin-rich) layer was not conductive. The films showed high sensitivity for strains between 1% and 10%. We propose that the mechanism of strain sensing is similar to that of layer-structured sensors fabricated through embedding conductive nanofillers onto flexible polymeric substrates. The advantage of the films derived by the method proposed here is their ease of fabrication as well as their low cost.

15.
J Am Chem Soc ; 141(2): 1045-1053, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30582892

RESUMO

Overcoming the brittleness of metal-organic frameworks (MOFs) is a challenge for industrial applications. To increase the mechanical strength, MOFs have been blended with polymers to form composites. However, this also brings challenges, such as integration and integrity of MOF in the composite, which can hamper the selectivity of gas separations. In this report, an "all MOF" material with mechanical flexibility has been prepared by covalent cross-linking of metal-organic polyhedra (MOPs). The ubiquitous Cu24 isophthalate MOP has been decorated with a long alkyl chain having terminal alkene functionalities so that MOPs can be cross-linked via olefin metathesis using Grubbs second generation catalyst. Different degrees of cross-linked MOP materials have been obtained by varying the amount of catalyst in the reaction. Rheology of these structures with varying number of cross-links was performed to assess the cross-link density and its homogeneity throughout the sample. The mechanical properties were further investigated by the nanoindentation method, which showed increasing hardness with higher cross-link density. Thus, this strategy of cross-linking MOPs with covalent flexible units allows us to create MOFs of increasing mechanical strength while retaining the MOP cavities.

16.
Langmuir ; 34(43): 12870-12881, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30266070

RESUMO

The emulsification of oil in water by nanoparticles can be facilitated by the addition of costabilizers, such as polymers and surfactants. The enhanced properties of the resulting emulsions are usually attributed to nanoparticle/costabilizer synergy; however, the mechanism of this synergistic effect and its impacts on emulsion stability and microstructure remain unclear. Here, we study the synergistic interaction of graphene oxide (GO) and a high molecular weight anionic polyacrylamide (PAM) in stabilization of paraffin oil/water emulsion systems. We show that the addition of PAM reduces the amount of GO required to stabilize an emulsion significantly. In order to probe the synergistic effect of GO and PAM, we analytically analyze the oil-free GO and GO-PAM dispersions and directly image their morphology via Cryo-TEM and atomic force microscopy (AFM). X-ray diffraction results confirm the adsorption of PAM molecules onto GO sheets resulting in the formation of ultimate GO-PAM complexes. The adsorption phenomenon is a consequence of hydrogen bonding and acid-base interactions, conceivably leading to a resilient electron-donor-acceptor complex. The microstructure of emulsions is captured with two-color fluorescent microscopy and Cryo-TEM. The acquired images display the localization of GO-PAM complexes at the interface while large amount of GO-PAM flocs coexist at the interface and in between oil droplets. Localization of such complexes and flocs at the interface is found to be responsible for their slow creaming rates compared to their GO counterparts. Mechanical properties of both dispersions and emulsions are studied by shear rheology. Rheological measurements confirm that GO-PAM complexes have a higher desorption energy from the interface resulting in higher critical shear strain of GO-PAM emulsions. The results, with insights into both structure and rheology, form a foundational understanding for integration of other polymers and nanoparticles in emulsion systems, which enables efficient design of these systems for an application of interest.

17.
J Colloid Interface Sci ; 532: 808-818, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144751

RESUMO

HYPOTHESIS: Microstructural and rheological properties of particle-stabilized emulsions are highly influenced by the nanoparticle properties such as size and surface charge. Surface charge of colloidal particles not only influences the interfacial adsorption but also the interparticle network formed by the non-adsorbed particles in the continuous phase. EXPERIMENTS: We have studied oil-in-water emulsions stabilized by cellulose nanocrystals (CNCs) with two different degrees of surface charge. Surface charge was varied by means of acidic or basic desulfation. Confocal microscopy coupled with rheology as well as cryogenic scanning electron microscopy were employed to establish a precise link between the microstructure and rheological behavior of the emulsions. FINDINGS: CNCs desulfated with hydrochloric acid (a-CNCs) were highly aggregated in water and shown to adsorb faster to the oil-water interface, yielding emulsions with smaller droplet sizes and a thicker CNC interfacial layer. CNCs desulfated using sodium hydroxide (b-CNCs) stabilized larger emulsion droplets and had a higher amount of non-adsorbed CNCs in the water phase. Rheological measurements showed that emulsions stabilized by a-CNCs formed a stronger network than for b-CNC stabilized emulsions due to increased van der Waals and H-bonding interactions that were not impeded by electrostatic repulsion.

18.
Soft Matter ; 14(21): 4268-4277, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29557446

RESUMO

Emulsions are widely used in industrial applications, including in food sciences, cosmetics, and enhanced oil recovery. For these industries, an in depth understanding of the stability and rheological properties of emulsions under both static and dynamic conditions is vital to their successful application. Presented here is a thorough assessment of a model nanoparticle (NP) stabilized dodecane-in-water emulsion as a route to improved understanding of the relationship between NP properties, microstructure and droplet-droplet interactions on the stability and rheological properties of emulsions. Emulsions are obtained here with low NP loadings without the need for added electrolyte through the use of an optimized silica NP (SNP) surface modification procedure. The prepared emulsions were characterized via optical microscopy, cryo-scanning electron microscopy (cryo-SEM), zeta potential analysis and laser scanning confocal microscopy (LSCM), enabling quantification of the emulsion droplet size, SNP interfacial coverage/morphology and surface charge. The correlation of these properties with the rheology of the emulsions is investigated through small amplitude oscillatory shear experiments which provide significant insight into the origins of the emulsions' rheological behavior and their stability. In addition, long-term stability, droplet-droplet network formation and microstructural evolution are found to be readily detectable shortly after preparation through measured progression of the emulsion's rheological properties.

19.
RSC Adv ; 8(56): 31967-31971, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35547475

RESUMO

Shape and size controlled nanostructures are critical for nanotechnology and have versatile applications in understanding interfacial phenomena of various multi-phase systems. Facile synthesis of fluorescent nanostructures remains a challenge from conventional precursors. In this study, bio-inspired catecholamines, dopamine (DA), epinephrine (EP) and levodopa (LDA), were used as precursors and fluorescent nanostructures were synthesized via a simple one pot method in a water-alcohol mixture under alkaline conditions. DA and EP formed fluorescent spheres and petal shaped structures respectively over a broad spectrum excitation wavelength, whereas LDA did not form any particular structure. However, the polyepinephrine (PEP) micropetals were formed by weaker interactions as compared to covalently linked polydopamine (PDA) nanospheres, as revealed by NMR studies. Application of these fluorescent structures was illustrated by their adsorption behavior at the oil/water interface using laser scanning confocal microscopy. Interestingly, PDA nanospheres showed complete coverage of the oil/water interface despite its hydrophilic nature, as compared to hydrophobic PEP micropetals which showed a transient coverage of the oil/water interface but mainly self-aggregated in the water phase. The reported unique fluorescent organic structures will play a key role in understanding various multi-phase systems used in aerospace, biomedical, electronics and energy applications.

20.
Langmuir ; 32(28): 7109-16, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27351486

RESUMO

Classical (surfactant stabilized) and Pickering (particle stabilized) type emulsions have been widely studied to elucidate the mechanisms by which emulsion stabilization is achieved. In Pickering emulsions, a key defining factor is that the stabilizing particles reside at the liquid-liquid interface providing a mechanical barrier to droplet coalescence. This interfacial adsorption is achieved through the use of nanoparticles that are partially wet by both liquid phases, often through covalent surface modification of or surfactant adsorption to the nanoparticle surfaces. Herein, we demonstrate particle-induced stabilization of an oil-in-water emulsion with fully water wet nanoparticles (no interfacial adsorption) via synergistic interaction with low concentrations of surfactants. Laser scanning confocal microscopy analysis allows for unique and vital insights into the properties of these emulsions via both three-dimensional imaging and real-time monitoring of particle dynamics at the oil-water interface. Investigation of these "non-Pickering" particle stabilized emulsions suggests that the nonadsorbed particles impart stability to the emulsion primarily via entropic forces imparted by the accumulation of silica nanoparticles in the coherent phase between dispersed oil droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...