Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 352, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589374

RESUMO

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge. Key opportunities and limits in using this dataset are discussed as well as possible future expansions of this open-source approach that should be explored. This dataset complements existing gridded BA data based on remote sensing and offers a valuable opportunity to better understand and assess fire regime changes, and their drivers, in these regions. The ONFIRE database can be freely accessed at https://zenodo.org/record/8289245 .

2.
Sci Total Environ ; 925: 171592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479526

RESUMO

Climate and land-use changes are altering fire regimes in many regions around the world. To date, most studies have focused on the effects of altered fire regimes on woody and herbaceous communities, while the mechanisms driving post-fire bryophyte succession remain poorly understood, particularly in Mediterranean-type ecosystems. Here, we examined changes in bryophyte functional composition along a post-fire chronosequence (ranging from 1 to 20+ years) in Pyrenean oak woodlands (northeastern Portugal). To do so, we defined bryophyte functional groups based on seven morphological, reproductive, and life history traits. Then, we fitted linear and structural equation models to disentangle the direct and indirect effects of fire (time since fire and fire intensity), vegetation structure, climate, topography, and edaphic conditions on the abundance of each group. We identified two main functional groups: early colonizers (species with traits associated with strong colonization ability and desiccation tolerance) and perennial stayers (species with high competitive ability, i.e., large perennial mosses). Overall, the abundance of early colonizer species decreased with time since fire and increased with fire intensity, while the opposite was observed for perennial stayers. Thus, successional dynamics reflected a trade-off between species' competitive and colonization abilities, highlighting the role of biotic interactions later in succession. Patterns of functional composition were also consistent with changes in environmental conditions during succession, suggesting that species may experience stressful conditions (i.e., high radiation and low water availability) in early stages of post-fire succession. Our results also indicate that increased fire intensity may alter successional trajectories, leading to long-term changes in bryophyte communities. By understanding the response of bryophyte communities to fire, we were able to identify species with potential use as soil restoration materials.


Assuntos
Briófitas , Incêndios , Ecossistema , Florestas , Clima , Briófitas/fisiologia
3.
PLoS One ; 19(1): e0295766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265975

RESUMO

Population exposure to heat waves (HWs) is increasing worldwide due to climate change, significantly affecting society, including public health. Despite its significant vulnerabilities and limited adaptation resources to rising temperatures, South America, particularly Brazil, lacks research on the health impacts of temperature extremes, especially on the role played by socioeconomic factors in the risk of heat-related illness. Here, we present a comprehensive analysis of the effects of HWs on mortality rates in the 14 most populous urban areas, comprising approximately 35% of the country's population. Excess mortality during HWs was estimated through the observed-to-expected ratio (O/E) for total deaths during the events identified. Moreover, the interplay of intersectionality and vulnerability to heat considering demographics and socioeconomic heterogeneities, using gender, age, race, and educational level as proxies, as well as the leading causes of heat-related excess death, were assessed. A significant increase in the frequency was observed from the 1970s (0-3 HWs year-1) to the 2010s (3-11 HWs year-1), with higher tendencies in the northern, northeastern, and central-western regions. Over the 2000-2018 period, 48,075 (40,448-55,279) excessive deaths were attributed to the growing number of HWs (>20 times the number of landslides-related deaths for the same period). Nevertheless, our event-based surveillance analysis did not detect the HW-mortality nexus, reinforcing that extreme heat events are a neglected disaster in Brazil. Among the leading causes of death, diseases of the circulatory and respiratory systems and neoplasms were the most frequent. Critical regional differences were observed, which can be linked to the sharp North-South inequalities in terms of socioeconomic and health indicators, such as life expectancy. Higher heat-related excess mortality was observed for low-educational level people, blacks and browns, older adults, and females. Such findings highlight that the strengthening of primary health care combined with reducing socioeconomic, racial, and gender inequalities represents a crucial step to reducing heat-related deaths.


Assuntos
Temperatura Alta , Expectativa de Vida , Feminino , Humanos , Idoso , Brasil/epidemiologia , Fatores Socioeconômicos , Escolaridade
4.
Sci Total Environ ; 896: 165092, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37355113

RESUMO

The flood event of November 25 and 26, 1967 corresponds to the deadliest storm affecting Portugal in recent centuries being responsible for >500 fatalities. The main trigger was the heavy rain that fell in just a few hours, provoking a rapid increase in river flows, although other concurrent circumstances had to occur to reach the dramatic water levels estimated in some affected places. However, even today, several important uncertainties related to water levels achieved and timing of floods remain. Here we aim to clarify some of the pending issues by applying suitable high performance numerical tools to elucidate the main conditioning factors that played a key role in the intensification of this dramatic flood. In particular, the analysis has been focused on Quintas village, the location most affected, where >100 fatalities were recorded, close to 2/3 of its total population at the time. The main conclusion provided by the numerical simulations was that a plugging of water flow downstream of Quintas village, favoured by a poor terrain maintenance coupled with the bottleneck created by topographic features, caused the critical over-elevation of water levels. Simulations also corroborate the rapid increase in water levels in Quintas village, with an estimated rise of >2 m in just two hours, as well as the occurrence of the flood during the night, preventing many people to be aware of the extreme danger they were facing and safeguarding themselves.

5.
iScience ; 26(3): 106141, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915678

RESUMO

Portugal is regularly affected by destructive wildfires that have severe social, economic, and ecological impacts. The total burnt area in 2017 (∼540,000 ha) marked the all-time record value since 1980 with a tragic toll of 114 fatalities that occurred in June and October events. The local insurance sector declared it was the costliest natural disaster in Portugal with payouts exceeding USD295 million. Here, the 2017 October event, responsible for more than 200,000 ha of burnt area and 50 fatalities is analyzed from a compound perspective. A prolonged drought led to preconditioned cumulative hydric stress of vegetation in October 2017. In addition, on 15 October 2017, two other major drivers played a critical role: 1) the passage of hurricane Ophelia off the Coast of Portugal, responsible for exceptional meteorological conditions and 2) the human agent, responsible for an extremely elevated number of negligent ignitions. This disastrous combination of natural and anthropogenic drivers led to the uncontrolled wildfires observed on 15 October.

6.
Ann N Y Acad Sci ; 1517(1): 44-62, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052446

RESUMO

Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.


Assuntos
Secas , Ecossistema , Recém-Nascido , Humanos , Brasil , Mudança Climática , Solo
7.
Sci Rep ; 12(1): 7422, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523791

RESUMO

Climate change is expected to have impacts on the balance of global food trade networks and food security. Thus, seasonal forecasts of precipitation and temperature are an essential tool for stakeholders to make timely choices regarding the strategies required to maximize their expected cereal yield outcomes. The availability of state-of-the-art seasonal forecasts such as the European Centre for Medium-Range Weather Forecasts (ECMWF) system 5 (SEAS5) may be an asset to help decision making. However, uncertainties and reduced skill may hamper the use of seasonal forecasts in several applications. Hence, in this work, we aim to understand the added value of such dynamical forecasts when compared to persistent anomalies of climate conditions used to predict the production of wheat and barley yields. With that in mind, empirical models relating annual wheat and barley yields in Spain to monthly values of precipitation and temperature are developed by taking advantage of ECMWF ERA5 reanalysis. Then, dynamical and persistence forecasts are issued at different lead times, and the skill of the subsequent forecasted yield is verified through probabilistic metrics. The results presented in this study demonstrate two different outcomes: (1) wheat and barley yield anomaly forecasts (dynamical and persistent) start to gain skill later in the season (typically from April onwards); and (2) the added value of using the SEAS5 forecast as an alternative to persistence ranges from 6 to 16%, with better results in the southern Spanish regions.


Assuntos
Grão Comestível , Tempo (Meteorologia) , Previsões , Estações do Ano , Temperatura , Triticum
9.
Int J Biometeorol ; 66(3): 457-468, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35061075

RESUMO

Excess mortality not directly related to the virus has been shown to have increased during the COVID-19 pandemic. However, changes in heat-related mortality during the pandemic have not been addressed in detail. Here, we performed an observational study crossing daily mortality data collected in Portugal (SICO/DGS) with high-resolution temperature series (ERA5/ECMWF), characterizing their relation in the pre-pandemic, and how it aggravated during 2020. The combined result of COVID-19 and extreme temperatures caused the largest annual mortality burden in recent decades (~ 12 000 excess deaths [~ 11% above baseline]). COVID-19 caused the largest fraction of excess mortality during March to May (62%) and from October onwards (85%). During summer, its direct impact was residual, and deaths not reported as COVID-19 dominated excess mortality (553 versus 3 968). A prolonged hot spell led mortality to the upper tertile, reaching its peak in mid-July (+ 45% deaths/day). The lethality ratio (+ 14 deaths per cumulated ºC) was higher than that observed in recent heatwaves. We used a statistical model to estimate expected deaths due to cold/heat, indicating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. Our findings suggest mortality during 2020 has been indirectly amplified by the COVID-19 pandemic, due to the disruption of healthcare systems and fear of population in attending healthcare facilities (expressed in emergency room admissions decreases). While lockdown measures and healthcare systems reorganization prevented deaths directly related to the virus, a significant burden due to other causes represents a strong secondary impact. This was particularly relevant during summer hot spells, when the lethality ratio reached magnitudes not experienced since the 2003 heatwaves. This severe amplification of heat-related mortality during 2020 stresses the need to resume normal healthcare services and public health awareness.


Assuntos
COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Temperatura Alta , Humanos , Mortalidade , SARS-CoV-2
10.
Pediatr Emerg Care ; 38(1): e240-e245, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925706

RESUMO

BACKGROUND: The overcrowding of emergency departments (EDs) is an increasingly relevant public health problem. The main aims of this study were to identify and analyze temporal periodicities of a self-referred pediatric ED (PED), correlate them with meteorological and calendar variables and build a robust forecasting model. METHODS: An 8-year administrative data set (2010-2017) of the daily number of admissions to the PED of a public hospital in Lisbon, Portugal, was used (n = 670,379). A time-series model of the daily number of visits was built, including temporal periodicities, the Portuguese school calendar, and a meteorological comfort index (humidex). RESULTS: Several temporal cycles were identified: 1 year (peak in January/February related to respiratory infections in younger children and infants), 6 months (peaks in May and October with an increase in the admissions of older children and adolescents with trauma, gastrointestinal infections and atopic symptoms), 4 months (related to annual school vacations), 1 week (lower admission values on Saturday), and half a week (low from Friday to Monday morning). School calendar and humidex were significantly correlated with daily admissions. The model yielded a mean absolute percentage error of 10.7% ± 1.10% when cross-validation was performed for the full data set. CONCLUSION: Although PED visits are multifactorial, they may be predicted and explained by a relatively small number of variables. Such a model may be easily reproduced in different settings and represents a relevant tool to improve quality in EDs through correctly adapting human resources to ED demand.


Assuntos
Serviço Hospitalar de Emergência , Hospitalização , Adolescente , Criança , Hospitais Públicos , Humanos , Lactente , Portugal/epidemiologia , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607952

RESUMO

Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.


Assuntos
Ecossistema , Meio Ambiente , Atividades Humanas , Migração Humana , Agricultura , Açores , Mudança Climática , Modelos Climáticos , Fezes/química , Humanos
12.
Sci Total Environ ; 797: 149141, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311348

RESUMO

The task of retrieving information about past flood events is very important to reconstruct flood series data. In this work, a wide range of different sources including newspapers, technical reports, and books was consulted in order to recover information about catastrophic flood events in Badajoz (Spain). A set of 37 catastrophic floods of the Guadiana River that occurred in Badajoz in the winter months (DJFM - December, January, February, and March) have been recovered since 1500 CE. This strong seasonality constrain is due to the important influence of the large-scale circulation patterns in winter affecting the climate of the Iberian Peninsula. Moreover, it is found that there is a clear difference between a higher number of floods in the 19th and 20th centuries and a substantial lower value of floods in the 16th-18th centuries. Finally, we evaluated the long-term evolution and inter-annual variability of the precipitation and the main large-scale atmospheric circulation patterns that govern climate variability in Iberia (NAO and EA modes) for the period 1851-1985. This analysis suggests that most extreme floods observed in this period (26 events) correspond to consecutive months with higher than usual precipitation, driven in part by unusual values of both the NAO and the EA modes of variability.


Assuntos
Inundações , Rios , Clima , Mudança Climática , Estações do Ano
13.
Nat Commun ; 11(1): 5082, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033244

RESUMO

One of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events. These anomalous moisture uptake (AMU) locations are identified on a global scale. The interannual variability of AMU displays a significant increase over the period 1980-2017, close to the Clausius-Clapeyron (CC) scaling, at 7 % per degree of surface temperature rise. These findings are consistent with an intensification of AR predicted by future projections. Our results also reveal generalized significant increases in AMU at the regional scale and an asymmetric supply of oceanic moisture, in which the maximum values are located over the region known as the Western Hemisphere Warm Pool (WHWP) centred on the Gulf of Mexico and the Caribbean Sea.

14.
Sci Rep ; 10(1): 14961, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917916

RESUMO

The North Atlantic Oscillation (NAO) is the major atmospheric mode that controls winter European climate variability because its strength and phase determine regional temperature, precipitation and storm tracks. The NAO spatial structure and associated climatic impacts over Europe are not stationary making it crucial to understanding its past evolution in order to improve the predictability of future scenarios. In this regard, there has been a dramatic increase in the number of studies aimed at reconstructing past NAO variability, but the information related to decadal-scale NAO evolution beyond the last millennium is scarce and inconclusive. We present a new 2,000-year multi-annual, proxy-based reconstruction of local NAO impact, with associated uncertainties, obtained by a Bayesian approach. This new local NAO reconstruction is obtained from a mountain lacustrine sedimentary archive of the Iberian Peninsula. This geographical area is not included in previous NAO reconstructions despite being a widely used region for instrumental-based NAO measurements. We assess the main external forcings (i.e., volcanic eruptions and solar activity) on NAO variability which, on a decadal scale, show that a low number of sunspots correlate to low NAO values. By comparison with other previously published NAO reconstructions in our analyses we can test the stationarity of the solar influence on the NAO signal across a latitudinal gradient based on the position of the employed archives for each NAO reconstruction. Inconclusive results on the volcanic forcing on NAO variability over decadal time-scales indicates the need for further studies. Moreover, we highlight the potential role of other North Atlantic modes of variability (i.e., East Atlantic pattern) on the non-stationary behaviour of the NAO throughout the Common Era, likely via solar forcing.

15.
Sci Rep ; 10(1): 13790, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796945

RESUMO

Wildfire activity is expected to increase across the Mediterranean Basin because of climate change. However, the effects of future climate change on the combinations of atmospheric conditions that promote wildfire activity remain largely unknown. Using a fire-weather based classification of wildfires, we show that future climate scenarios point to an increase in the frequency of two heat-induced fire-weather types that have been related to the largest wildfires in recent years. Heat-induced fire-weather types are characterized by compound dry and warm conditions occurring during summer heatwaves, either under moderate (heatwave type) or intense (hot drought type) drought. The frequency of heat-induced fire-weather is projected to increase by 14% by the end of the century (2071-2100) under the RCP4.5 scenario, and by 30% under the RCP8.5, suggesting that the frequency and extent of large wildfires will increase throughout the Mediterranean Basin.

16.
Int J Biometeorol ; 64(8): 1319-1332, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32314060

RESUMO

Temperature record-breaking events, such as the observed more intense, longer-lasting, and more frequent heat waves, pose a new global challenge to health sectors worldwide. These threats are of particular interest in low-income regions with limited investments in public health and a growing urban population, such as Brazil. Here, we apply a comprehensive interdisciplinary climate-health approach, including meteorological data and a daily mortality record from the Brazilian Health System from 2000 to 2015, covering 21 cities over the Metropolitan Region of Rio de Janeiro. The percentage of absolute mortality increase due to summer extreme temperatures is estimated using a negative binomial regression modeling approach and maximum/minimum temperature-derived indexes as covariates. Moreover, this study assesses the vulnerability to thermal stress for different age groups and both genders and thoroughly analyzes four extremely intense heat waves during 2010 and 2012 regarding their impacts on the population. Results showed that the highest absolute mortality values during heat-related events were linked to circulatory illnesses. However, the highest excess of mortality was related to diabetes, particularly for women within the elderly age groups. Moreover, results indicate that accumulated heat stress conditions during consecutive days preferentially preceded by persistent periods of moderate-temperature, lead to higher excess mortality rather than sporadic single hot days. This work may provide directions in human health policies related to extreme climate events in large tropical metropolitan areas from developing countries, contributing to altering the historically based purely reactive response.


Assuntos
Clima , Temperatura Alta , Idoso , Brasil , Cidades , Mudança Climática , Feminino , Humanos , Masculino , Mortalidade
17.
Sci Rep ; 9(1): 13886, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601820

RESUMO

A record 500,000 hectares burned in Portugal during the extreme wildfire season of 2017, with more than 120 human lives lost. Here we analyse the climatic factors responsible for the burned area (BA) from June to October series in Portugal for the period 1980-2017. Superposed onto a substantially stationary trend on BA data, strong oscillations on shorter time scales were detected. Here we show that they are significantly affected by the compound effect of summer (June-July-August) drought and high temperature conditions during the fire season. Drought conditions were calculated using the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI). Then the extent to which the burned area has diverged from climate-expected trends was assessed. Our results indicate that in the absence of other drivers, climate change would have led to higher BA values. In addition, the 2017 extreme fire season is well captured with the model forced with climate drivers only, suggesting that the extreme fire season of 2017 could be a prelude to future conditions and likewise events. Indeed, the expected further increase of drought and high temperature conditions in forthcoming decades, point at a potential increase of fire risk in this region. The climate-fire model developed in this study could be useful to develop more skilled seasonal predictions capable of anticipating potentially hazardous conditions.

18.
Ann N Y Acad Sci ; 1436(1): 217-230, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295926

RESUMO

A Lagrangian analysis is applied to identify the main moisture source areas associated with atmospheric rivers (ARs) making landfall along the west coast of South Africa during the extended austral winter months from 1980 to 2014. The results show that areas that provide the anomalous uptake of moisture can be categorized into four regions: (1) the South Atlantic Ocean between 10°S and 30°S, (2) a clear local maximum in the eastern South Atlantic, (3) a continental source of anomalous uptake to the north of the Western Cape, and (4) over South America at a distance of more than 7000 km from the target region. It emerges that the South American moisture source can be linked to a particular phase of the South American low-level jet, known as a no Chaco jet event (NCJE), which transports moisture to the western and central South Atlantic basin. Concisely, we provide strong evidence that the two margins of the South Atlantic Ocean appear connected by two meteorological structures, with the NCJE playing a key role of transporting moisture from South America to the western and central South Atlantic basin, feeding the AR that transports some of the moisture to the west coast of South Africa.


Assuntos
Modelos Teóricos , Estações do Ano , Temperatura , África Austral , Oceano Atlântico , América do Sul
19.
Sci Total Environ ; 650(Pt 1): 796-808, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308855

RESUMO

Global temperatures have increased considerably over the last decades, directly impacting the number, intensity and duration of extreme events such as heat waves. Climate model projections accounting for anthropogenic factors indicate that deadly mega-heat waves are likely to become more frequent in the future. Although the atmospheric features and social-economic related impacts of heat waves have already been documented in various regions around the world, for other highly populated regions, such as the Metropolitan Region of Rio de Janeiro (MRRJ), a similar objective assessment is still needed. Heat waves directly impact the public health sector and particularly the less wealthy and elderly population groups. During February 2010, an elevated mortality peak occurred during a 8-day period (from 2 to 9 Feb 2010) characterized as a heat wave episode in MRRJ. A total excess of 737 deaths was recorded with the elderly group registering the highest mortality incidence. During this heat wave period, a quasi-stationary anticyclonic anomaly forced in altitude by a Rossby wave train was established over the south Brazilian coast. At the surface, the meteorological scenario from January 2010 to the heat wave period was marked by clear sky conditions, large precipitation deficits, and enhanced diabatic heating. During the heat wave period, warm and dry air masses were advected from interior regions towards the MRRJ, exacerbating temperature conditions by pronounced subsidence and adiabatic heating mechanisms. All these conditions contributed to pronounced positive temperature anomalies, reinforced by land-atmosphere feedbacks.


Assuntos
Atmosfera/química , Clima , Exposição Ambiental/estatística & dados numéricos , Temperatura Alta , Mortalidade/tendências , Idoso , Brasil , Mudança Climática , Humanos , Incidência , Saúde Pública
20.
Int J Biometeorol ; 62(7): 1167-1179, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29572569

RESUMO

A large outbreak of Legionnaires' disease occurred in November 2014 nearby Lisbon, Portugal. This epidemic infected 377 individuals by the Legionella pneumophila bacteria, resulting in 14 deaths. The primary source of transmission was contaminated aerosolized water which, when inhaled, lead to atypical pneumonia. The unseasonably warm temperatures during October 2014 may have played a role in the proliferation of Legionella species in cooling tower systems. The episode was further exacerbated by high relative humidity and a thermal inversion which limited the bacterial dispersion. Here, we analyze if the Legionella outbreak event occurred during a situation of extreme potential recirculation and/or stagnation characteristics. In order to achieve this goal, the Allwine and Whiteman approach was applied for a hindcast simulation covering the affected area during a near 20-year long period (1989-2007) and then for an independent period covering the 2014 event (15 October to 13 November 2014). The results regarding the average daily critical transport indices for the 1989-2007 period clearly indicate that the airshed is prone to stagnation as these events have a dominant presence through most of the study period (42%), relatively to the occurrence of recirculation (18%) and ventilation (17%) events. However, the year of 2014 represents an exceptional year when compared to the 1989-2007 period, with 53 and 33% of the days being classified as under stagnation and recirculation conditions, respectively.


Assuntos
Surtos de Doenças , Doença dos Legionários/epidemiologia , Movimentos do Ar , Humanos , Legionella pneumophila , Portugal/epidemiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...