Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2219540120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186837

RESUMO

Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Ligases/metabolismo , Parede Celular/metabolismo , Genômica , Peptidoglicano/metabolismo , Peptídeo Sintases/metabolismo
3.
Nat Commun ; 12(1): 2987, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016967

RESUMO

The elongasome, or Rod system, is a protein complex that controls cell wall formation in rod-shaped bacteria. MreC is a membrane-associated elongasome component that co-localizes with the cytoskeletal element MreB and regulates the activity of cell wall biosynthesis enzymes, in a process that may be dependent on MreC self-association. Here, we use electron cryo-microscopy and X-ray crystallography to determine the structure of a self-associated form of MreC from Pseudomonas aeruginosa in atomic detail. MreC monomers interact in head-to-tail fashion. Longitudinal and lateral interfaces are essential for oligomerization in vitro, and a phylogenetic analysis of proteobacterial MreC sequences indicates the prevalence of the identified interfaces. Our results are consistent with a model where MreC's ability to alternate between self-association and interaction with the cell wall biosynthesis machinery plays a key role in the regulation of elongasome activity.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Parede Celular/ultraestrutura , Sequência Conservada/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Mutagênese , Filogenia , Conformação Proteica em alfa-Hélice/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Multimerização Proteica , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
4.
Bioorg Chem ; 100: 103921, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464403

RESUMO

Enterococci are gram-positive, widespread nosocomial pathogens that in recent years have developed resistance to various commonly employed antibiotics. Since finding new infection-control agents based on secondary metabolites from organisms has proved successful for decades, natural products are potentially useful sources of compounds with activity against enterococci. Herein are reported the results of a natural product library screening based on a whole-cell assay against a gram-positive model organism, which led to the isolation of a series of anacardic acids identified by analysis of their spectroscopic data and by chemical derivatizations. Merulinic acid C was identified as the most active anacardic acid derivative obtained against antibiotic-resistant enterococci. Fluorescence microscopy analyses showed that merulinic acid C targets the bacterial membrane without affecting the peptidoglycan and causes rapid cellular ATP leakage from cells. Merulinic acid C was shown to be synergistic with gentamicin against Enterococcus faecium, indicating that this compound could inspire the development of new antibiotic combinations effective against drug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Gentamicinas/farmacologia , Sinergismo Farmacológico , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/metabolismo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Hidroxibenzoatos/farmacologia
5.
Biochemistry ; 58(30): 3314-3324, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31264408

RESUMO

Peptidoglycan is one of the major components of the bacterial cell wall, being responsible for shape and stability. Due to its essential nature, its biosynthetic pathway is the target for major antibiotics, and proteins involved in its biosynthesis continue to be targeted for inhibitor studies. The biosynthesis of its major building block, Lipid II, is initiated in the bacterial cytoplasm with the sequential reactions catalyzed by Mur enzymes, which have been suggested to form a multiprotein complex to facilitate shuttling of the building blocks toward the inner membrane. In this work, we purified MurC, MurD, MurE, MurF, and MurG from the human pathogen Streptococcus pneumoniae and characterized their interactions using chemical cross-linking, mass spectrometry, analytical ultracentrifugation, and microscale thermophoresis. Mur ligases interact strongly as binary complexes, with interaction regions mapping mostly to loop regions. Interestingly, MurC, MurD, and MurE display 10-fold higher affinity for each other than for MurF and MurG, suggesting that Mur ligases that catalyze the initial reactions in the peptidoglycan biosynthesis pathway could form a subcomplex that could be important to facilitate Lipid II biosynthesis. The interface between Mur proteins could represent a yet unexplored target for new inhibitor studies that could lead to the development of novel antimicrobials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Streptococcus pneumoniae/genética
6.
Sci Rep ; 8(1): 527, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323132

RESUMO

Alpha-2-macroglobulins (A2Ms) are large spectrum protease inhibitors that are major components of the eukaryotic immune system. Pathogenic and colonizing bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, also carry structural homologs of eukaryotic A2Ms. Two types of bacterial A2Ms have been identified: Type I, much like the eukaryotic form, displays a conserved thioester that is essential for protease targeting, and Type II, which lacks the thioester and to date has been poorly studied despite its ubiquitous presence in Gram-negatives. Here we show that MagD, the Type II A2M from P. aeruginosa that is expressed within the six-gene mag operon, specifically traps a target protease despite the absence of the thioester motif, comforting its role in protease inhibition. In addition, analytical ultracentrifugation and small angle scattering show that MagD forms higher order complexes with proteins expressed in the same operon (MagA, MagB, and MagF), with MagB playing the key stabilization role. A P. aeruginosa strain lacking magB cannot stably maintain MagD in the bacterial periplasm, engendering complex disruption. This suggests a regulated mechanism of Mag complex formation and stabilization that is potentially common to numerous Gram-negative organisms, and that plays a role in periplasm protection from proteases during infection or colonization.


Assuntos
Proteínas de Bactérias/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Óperon , alfa 2-Macroglobulinas Associadas à Gravidez/química , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Pseudomonas aeruginosa/genética
7.
Nat Commun ; 8(1): 776, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974686

RESUMO

Bacterial cell wall biosynthesis is an essential process that requires the coordinated activity of peptidoglycan biosynthesis enzymes within multi-protein complexes involved in cell division (the "divisome") and lateral wall growth (the "elongasome"). MreC is a structural protein that serves as a platform during wall elongation, scaffolding other essential peptidoglycan biosynthesis macromolecules, such as penicillin-binding proteins. Despite the importance of these multi-partite complexes, details of their architecture have remained elusive due to the transitory nature of their interactions. Here, we present the crystal structures of the soluble PBP2:MreC core elongasome complex from Helicobacter pylori, and of uncomplexed PBP2. PBP2 recognizes the two-winged MreC molecule upon opening of its N-terminal region, revealing a hydrophobic zipper that serves as binding platform. The PBP2:MreC interface is essential both for protein recognition in vitro and maintenance of bacterial shape and growth. This work allows visualization as to how peptidoglycan machinery proteins are scaffolded, revealing interaction regions that could be targeted by tailored inhibitors.Bacterial wall biosynthesis is a complex process that requires the coordination of multiple enzymes. Here, the authors structurally characterize the PBP2:MreC complex involved in peptidoglycan elongation and cross-linking, and demonstrate that its disruption leads to loss of H. pylori shape and inability to sustain growth.


Assuntos
Proteínas de Bactérias/química , Parede Celular/metabolismo , Helicobacter pylori/genética , Proteínas de Ligação às Penicilinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Helicobacter pylori/metabolismo , Modelos Moleculares , Proteínas de Ligação às Penicilinas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
J Proteomics ; 151: 53-65, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27576135

RESUMO

ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE: Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.


Assuntos
Proteína ADAM17/metabolismo , Glipicanas/metabolismo , Proteômica/métodos , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Micropartículas Derivadas de Células , Neoplasias de Cabeça e Pescoço , Humanos , Espectrometria de Massas , Metaloproteases , Ligação Proteica , Proteólise , Carcinoma de Células Escamosas de Cabeça e Pescoço
9.
Mol Biosyst ; 7(1): 180-93, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21042649

RESUMO

Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.


Assuntos
Citoplasma/metabolismo , Glicoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Ubiquitina-Proteína Ligases/metabolismo , Glicoproteínas/classificação , Glicoproteínas/genética , Humanos , Imunoprecipitação , Proteínas Nucleares/genética , Filogenia , Reação em Cadeia da Polimerase , Ligação Proteica , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Análise de Sequência de DNA , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...