Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(16): 6128-6137, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35404603

RESUMO

The resurgence of interest in a hydrogen economy and the development of hydrogen-related technologies has initiated numerous research and development efforts aimed at making the generation, storage, and transportation of hydrogen more efficient and affordable. Solar thermochemical hydrogen production (STCH) is a process that potentially exhibits numerous benefits such as high reaction efficiencies, tunable thermodynamics, and continued performance over extended cycling. Although CeO2 has been the de facto standard STCH material for many years, more recently 12R-Ba4CeMn3O12 (BCM) has demonstrated enhanced hydrogen production at intermediate H2/H2O conditions compared to CeO2, making it a contender for large-scale hydrogen production. However, the thermo-reduction stability of 12R-BCM dictates the oxygen partial pressure (pO2) and temperature conditions optimal for cycling. In this study, we identify the formation of a 6H-BCM polytype at high temperature and reducing conditions, experimentally and computationally, as a mechanism and pathway for 12R-BCM decomposition. 12R-BCM was synthesized with high purity and then controllably reduced using thermogravimetric analysis (TGA). Synchrotron X-ray diffraction (XRD) data is used to identify the formation of a 6H-Ba3Ce0.75Mn2.25O9 (6H-BCM) polytype that is formed at 1350 °C under strongly reducing pO2. Density functional theory (DFT) total energy and defect calculations show a window of thermodynamic stability for the 6H-polytype consistent with the XRD results. These data provide the first evidence of the 6H-BCM polytype and could provide a mechanistic explanation for the superior water-splitting behaviors of 12R-BCM.

2.
Chem Rev ; 120(2): 814-850, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31657551

RESUMO

The relationship between experiment and theory in electrocatalysis is one of profound importance. Until fairly recently, the principal role of theory in this field was interpreting experimental results. Over the course of the past decade (roughly the period covered by this review), however, that has begun to change, with theory now frequently leading the design of electrocatalytic materials. Though rewarding, this has not been a particularly easy union. For one thing, experimentalists and theorists have to come to grips with the fact that they rely on different models. Theorists make predictions based on individual, perfect structural models, while experimentalists work with more complex and heterogeneous ensembles of electrocatalysts. As discussed in this review, computational capabilities have improved in recent years, so that theory is better represented by the structures that experimentalists are able to prepare. Likewise, synthetic chemists are able to make ever more complex electrocatalysts with high levels of control, which provide a more extensive palette of materials for testing theory. The goal of this review is to highlight research from the last ∼10 years that focuses on carefully controlled electrocatalytic experiments which, in combination with theoretical predictions, bring us closer to bridging the gap between real catalysts and computational models.

3.
J Am Chem Soc ; 139(45): 16161-16167, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29099183

RESUMO

In this paper, we show that Au nanoparticles (AuNPs) stabilized with either citrate or by low-generation dendrimers rapidly grow during electrocatalytic reduction of CO2. For example, citrate-stabilized AuNPs and AuNPs encapsulated within sixth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers (G6-OH DENs) having diameters of ∼2 nm grow substantially in size (to 6-7 nm) and polydispersity during just 15 min of electrolysis at -0.80 V (vs RHE). This degree of instability makes it impossible to correlate the structure of AuNPs determined prior to electrocatalysis to their catalytic function. In contrast to the G6-OH dendrimer, the higher generation G8-OH analogue stabilizes AuNPs under the same conditions that lead to instability of the other two materials. More specifically, G8-OH DENs having an initial size of 1.7 ± 0.3 nm increase to only 2.2 ± 0.5 nm during electrolysis in 0.10 M NaHCO3 at -0.80 V (vs RHE). Even when the electrolysis is carried out at -1.20 V, the higher-generation dendrimer stabilizes encapsulated AuNPs. This is presumably due to the compactness of the periphery of the G8-OH dendrimer. Although the G8-OH dendrimer nearly eliminates AuNP growth, the surface of the AuNP is still accessible for electrocatalytic reactions. The smaller, more stable G8-OH DENs strongly favor formation of H2 over CO. Some previous reports have suggested that AuNPs in the ∼2 nm size range yield primarily CO, but we believe these findings are a consequence of the growth of the AuNPs during catalysis and do not reflect the true function of ∼2 nm AuNPs.

4.
J Org Chem ; 81(22): 10955-10963, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27704820

RESUMO

Six new heteroaromatic polycyclic azaborine chromophores were designed, synthesized, and investigated as easily tunable high-luminescent organic materials. The impact of the nitrogen-boron-hydroxy (N-BOH) unit in the azaborines was investigated by comparison with their N-carbonyl analogs. Insertion of the N-B(OH)-C unit into heteroaromatic polycyclic compounds resulted in strong visible absorption and sharp fluorescence with efficient quantum yields. The solid-state fluorescence of the heteroaromatic polycyclic compounds displayed a large Stokes shift compared to being in solution. The large Stokes shifts observed offset the self-quench effect in the solid state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...