Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22587, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114596

RESUMO

Inflammation conditions are associated with autism spectrum disorder (ASD) and cerebral palsy (CP), primarily observed in the peripheral immune system. However, the extent of neuro-inflammation and neuro-immune dysregulation remains poorly studied. In this study, we analyzed the composition of cerebrospinal fluid (CSF) to uncover the inflammatory mediators driving the neuro-immune system in ASD and CP patients. Our findings revealed that ASD patients had elevated levels of four inflammatory cytokines (TNF-α, IL-4, IL-21, and BAFF) compared to controls, while CP patients exhibited increased levels of eight inflammatory cytokines (IFN-γ, GM-CSF, TNF-α, IL-2, IL-4, IL-6, IL-17A and IL-12), one anti-inflammatory cytokine (IL-10), and five growth factors (GFs) (NGF-ß, EGF, GDF-15, G-CSF and BMP-9) compared to both controls and ASD patients. Additionally, intrathecal infusion of autologous bone marrow mononuclear cells (BMMNCs) led to a slight decrease in TGF-ß and GDF-15 levels in the CSF of ASD and CP patients, respectively. Our study provides new insights into the molecular composition of CSF in ASD and CP patients, with the potential to develop more effective diagnosis methods and improved treatment for these diseases.Clinical trial registration CSF samples used in this study are from clinical trials NCT03225651, NCT05307536, NCT02569775, NCT03123562, NCT02574923, NCT05472428 and previous reports [7, 9, 17-19].


Assuntos
Transtorno do Espectro Autista , Paralisia Cerebral , Humanos , Fator 15 de Diferenciação de Crescimento , Fator de Necrose Tumoral alfa/metabolismo , Mediadores da Inflamação , Doenças Neuroinflamatórias , Interleucina-4 , Citocinas/metabolismo , Inflamação/metabolismo
2.
Cell Reprogram ; 23(6): 359-369, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748399

RESUMO

Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) are believed to have potential for the treatment of various diseases; thus, many scientists have investigated the molecular mechanisms underlying the function of UC-MSCs and, for example, the appropriate media for large-scale UC-MSC expansion to prepare cells for real-world application. In this study, we investigated the cellular morphology, proliferation capacity, surface markers, cellular senescence signals, clonogenic potential, trilineage differentiation capacity, and secreted factors of human primary UC-MSCs in long-term culture from passage 2 (P2) to passage 10 (P10) with either conventional fetal bovine serum (FBS)-supplemented medium or commercial xeno- and serum-free medium (StemMACS™). We found that the cells cultured in both media had similar morphology and marker expression. However, the proliferation kinetics as measured by the cell population doubling time differed in a passage (P2-P10)-dependent manner between the cells cultured in the two media; sustainable growth was observed in cells maintained in xeno- and serum-free medium. Moreover, significant differences in cellular senescence signals were observed, with more aging cells in the cell population cultured in FBS-containing medium. Colony numbers and the day that the first colony appeared were similar; however, UC-MSC colony sizes were smaller when cultured in FBS-containing medium. In addition, the multidifferentiation potential of UC-MSCs cultured in xeno- and serum-free StemMACS medium was maintained during long-term culture, but this potential was lost for adipogenic differentiation at P9. Moreover, secreted epidermal growth factor and vascular endothelial growth factor (VEGF)-A were detected in the conditioned media from UC-MSCs, whereas platelet-derived growth factor was not. Similar expression of these factors was observed in conditioned media of UC-MSCs cultured in StemMACS, but the VEGF level was higher in young UC-MSCs (P6) than in aged UC-MSCs cultured in FBS-supplemented Dulbecco's modified Eagle's medium/F12. Thus, StemMACS is better for UC-MSC expansion than conventional FBS-supplemented culture medium, especially when culturing UC-MSCs for real-world applications.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Idoso , Proliferação de Células , Humanos , Soroalbumina Bovina , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA