Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 990136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117913

RESUMO

Many questions surround the underlying mechanism for the differential metabolic processing observed for the prion protein (PrP) in healthy and prion-infected mammals. Foremost, the physiological α-cleavage of PrP interrupts a region critical for both toxicity and conversion of cellular PrP (PrP C ) into its misfolded pathogenic isoform (PrP Sc ) by generating a glycosylphosphatidylinositol (GPI)-anchored C1 fragment. During prion diseases, alternative ß-cleavage of PrP becomes prominent, producing a GPI-anchored C2 fragment with this particular region intact. It remains unexplored whether physical up-regulation of α-cleavage can inhibit disease progression. Furthermore, several pieces of evidence indicate that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 play a much smaller role in the α-cleavage of PrP C than originally believed, thus presenting the need to identify the primary protease(s) responsible. For this purpose, we characterized the ability of plasmin to perform PrP α-cleavage. Then, we conducted functional assays using protein misfolding cyclic amplification (PMCA) and prion-infected cell lines to clarify the role of plasmin-mediated α-cleavage during prion propagation. Here, we demonstrated an inhibitory role of plasmin for PrP Sc formation through PrP α-cleavage that increased C1 fragments resulting in reduced prion conversion compared with non-treated PMCA and cell cultures. The reduction of prion infectious titer in the bioassay of plasmin-treated PMCA material also supported the inhibitory role of plasmin on PrP Sc replication. Our results suggest that plasmin-mediated endoproteolytic cleavage of PrP may be an important event to prevent prion propagation.

2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613636

RESUMO

Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.


Assuntos
Doenças Priônicas , Príons , Scrapie , Zingiberaceae , Animais , Camundongos , Curcuma/metabolismo , Modelos Animais , Extratos Vegetais/farmacologia , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas , Príons/metabolismo , Scrapie/metabolismo , Ovinos
3.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766475

RESUMO

Self-assembling peptides are biomedical materials with unique structures that are formed in response to various environmental conditions. Governed by their physicochemical characteristics, the peptides can form a variety of structures with greater reactivity than conventional non-biological materials. The structural divergence of self-assembling peptides allows for various functional possibilities; when assembled, they can be used as scaffolds for cell and tissue regeneration, and vehicles for drug delivery, conferring controlled release, stability, and targeting, and avoiding side effects of drugs. These peptides can also be used as drugs themselves. In this review, we describe the basic structure and characteristics of self-assembling peptides and the various factors that affect the formation of peptide-based structures. We also summarize the applications of self-assembling peptides in the treatment of various diseases, including cancer. Furthermore, the in-cell self-assembly of peptides, termed reverse self-assembly, is discussed as a novel paradigm for self-assembling peptide-based nanovehicles and nanomedicines.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Humanos , Nanoestruturas/química , Medicina Regenerativa/métodos
4.
Biochem Biophys Res Commun ; 512(2): 314-318, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890336

RESUMO

Plasmin is a potent serin protease involved in a variety of biological functions, such as fibrinolysis and tissue remodeling. On performing an in vitro control assay to measure the activity of endogenous plasmin in cell lysates, a stimulatory effect of non-ionic detergent NP-40 on plasmin activity was discovered. Another non-ionic detergent, TX-100, also enhanced plasmin activity, while ionic detergents sodium deoxycholate and sodiem dodecyl sulfate abolished plasmin enzyme activity. Kinetic analysis of plasmin activity in the presence of NP-40 and TX-100 demonstrated an increase in Vmax; however, there was no change in Km values, suggesting that these detergents stimulate plasmin activity in a non-competitive manner. Fibrin plate assay indicates that NP-40 and TX-100 functionally stimulate plasmin activity by showing a dose-dependent increase in fibrinolysis.


Assuntos
Detergentes/farmacologia , Fibrinolisina/efeitos dos fármacos , Fibrinolisina/metabolismo , Ácido Desoxicólico/farmacologia , Fibrinólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Cinética , Octoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA