Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(3): 035012, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33202399

RESUMO

The lowest possible energy of proton scanning beam in cyclotron proton therapy facilities is typically between 60 and 100 MeV. Treatment of superficial lesions requires a pre-absorber to deliver doses to shallower volumes. In most of the cases a range shifter (RS) is used, but as an alternative solution, a patient-specific 3D printed proton beam compensator (BC) can be applied. A BC enables further reduction of the air gap and consequently reduction of beam scattering. Such pre-absorbers are additional sources of secondary radiation. The aim of this work was the comparison of RS and BC with respect to out-of-field doses for a simulated treatment of superficial paediatric brain tumours. EURADOS WG9 performed comparative measurements of scattered radiation in the Proteus C-235 IBA facility (Cyclotron Centre Bronowice at the Institute of Nuclear Physics, CCB IFJ PAN, Kraków, Poland) using two anthropomorphic phantoms-5 and 10 yr old-for a superficial target in the brain. Both active detectors located inside the therapy room, and passive detectors placed inside the phantoms were used. Measurements were supplemented by Monte Carlo simulation of the radiation transport. For the applied 3D printed pre-absorbers, out-of-field doses from both secondary photons and neutrons were lower than for RS. Measurements with active environmental dosimeters at five positions inside the therapy room indicated that the RS/BC ratio of the out-of-field dose was also higher than one, with a maximum of 1.7. Photon dose inside phantoms leads to higher out-of-field doses for RS than BC to almost all organs with the highest RS/BC ratio 12.5 and 13.2 for breasts for 5 and 10 yr old phantoms, respectively. For organs closest to the isocentre such as the thyroid, neutron doses were lower for BC than RS due to neutrons moderation in the target volume, but for more distant organs like bladder-conversely-lower doses for RS than BC were observed. The use of 3D printed BC as the pre-absorber placed in the near vicinity of patient in the treatment of superficial tumours does not result in the increase of secondary radiation compared to the treatment with RS, placed far from the patient.


Assuntos
Impressão Tridimensional , Terapia com Prótons/instrumentação , Doses de Radiação , Neoplasias Encefálicas/radioterapia , Criança , Simulação por Computador , Humanos , Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
Phys Med Biol ; 63(8): 085017, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29509148

RESUMO

Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300 × 300 × 600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100 × 100 × 100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy-1 at a distance of 100 mm and 0.02 mGy Gy-1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy-1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.


Assuntos
Imageamento Tridimensional/métodos , Imagens de Fantasmas , Terapia com Prótons/métodos , Radiometria/métodos , Dosimetria Termoluminescente/métodos , Raios gama , Humanos , Método de Monte Carlo , Nêutrons , Fótons , Prótons , Radioatividade , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Termoluminescente/instrumentação , Água
3.
Radiat Prot Dosimetry ; 180(1-4): 256-260, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165619

RESUMO

Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique.


Assuntos
Imagens de Fantasmas , Terapia com Prótons/instrumentação , Prótons , Radiometria/instrumentação , Dosimetria Termoluminescente/instrumentação , Algoritmos , Antropometria , Criança , Pré-Escolar , Desenho de Equipamento , Raios gama/uso terapêutico , Humanos , Método de Monte Carlo , Nêutrons , Doses de Radiação , Radiação Ionizante , Cintilografia , Dosagem Radioterapêutica
4.
J Environ Radioact ; 158-159: 64-70, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27074199

RESUMO

A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra.


Assuntos
Poluentes Radioativos do Ar/análise , Radônio/análise , Partículas alfa , Simulação por Computador , Meio Ambiente , Método de Monte Carlo , Monitoramento de Radiação/métodos , Semicondutores
5.
Med Phys ; 42(5): 2572-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979049

RESUMO

PURPOSE: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. METHODS: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9-Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H(∗)(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs--tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm(3)) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm(2) field size. RESULTS: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H(∗)(10) value of ∼ 51 µSv Gy(-1); this was measured at 1.15 m along the beam axis. H(∗)(10) values significantly decreased with distance and angular position with respect to beam axis falling below 2 nSv Gy(-1) at the entrance of the maze, at the door outside the room and below detection limit in the gantry control room, and at an adjacent room (<0.1 nSv Gy(-1)). Finally, the agreement on H(∗)(10) values between all detectors showed a direct dependence on neutron spectra at the measurement position. While conventional rem-counters (LB 6411, RadEye™ NL, NM2-458) underestimated the H(∗)(10) by up to a factor of 4, Hawk TEPCs and the WENDI-II range-extended detector were found to have good performance (within 20%) even at the highest neutron fluence and energy range. Meanwhile, secondary photon dose equivalents were found to be up to five times lower than neutrons; remaining nonetheless of concern to the patient. CONCLUSIONS: Extended-range BSS, TEPCs, and the WENDI-II enable accurate measurements of stray neutrons while other rem-counters are not appropriate considering the high-energy range of neutrons involved in proton therapy.


Assuntos
Terapia com Prótons/métodos , Radiometria/métodos , Europa (Continente) , Nêutrons , Imagens de Fantasmas , Fótons , Terapia com Prótons/instrumentação , Prótons , Doses de Radiação , Radiometria/instrumentação , Análise Espectral/instrumentação , Análise Espectral/métodos , Água
6.
Protein Sci ; 6(8): 1612-20, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9260274

RESUMO

beta-Crystallins are oligomeric eye lens proteins that are related to monomeric gamma-crystallins by domain swapping: like gamma-crystallins, they are comprised of two similar domains but they differ in having long sequence extensions. beta B2, a major component of beta-crystallin oligomers, self-associates to a homodimer in solution. In two crystal structures of native beta B2, the protein is a 222-symmetric tetramer of eight domains. It has previously been shown that a mutant of rat beta B2-crystallin, in which the bulk of the N- and C-terminal sequence extensions has been deleted, assembles into dimers and tetramers. Here we present the 3.0 A resolution X-ray structure of the tetramer, beta B2 delta NC1. The mutant tetramer has a very similar set of domain interactions to the native structure. However, the structures differ in the relative orientation of the two sets of four domains. The paired N- and C-terminal domain interface, which is at the heart of the dimer structure, is very similar to the native structure. However, the truncation of the C-terminal extension removes an important tryptophan residue, which prevents the extension from acting as a (non-covalent) linker, as it does in native beta B2. There is a knock-on structural effect that removes a contact between extension and covalent linker, and this appears to cause a small twist in the linker that is amplified into a 20 degrees rotation between sets of paired domains.


Assuntos
Cristalinas/química , Sequência de Aminoácidos , Animais , Bovinos , Cristalinas/genética , Dimerização , Dados de Sequência Molecular , Mutagênese , Ratos , Difração de Raios X
7.
Protein Sci ; 3(9): 1392-400, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7833801

RESUMO

beta B2- and gamma B-crystallins of vertebrate eye lens are 2-domain proteins in which each domain consists of 2 Greek key motifs connected by a linker peptide. Although the folding topologies of beta B2- and gamma B-domains are very similar, gamma B-crystallin is always monomeric, whereas beta B2-crystallin associates to homodimers. It has been suggested that the linker or the protruding N- and C-terminal arms of beta B2-crystallin (not present in gamma B) are a necessary requirement for this association. In order to investigate the role of these segments for dimerization, we constructed two beta B2 mutants. In the first mutant, the linker peptide was replaced with the one from gamma B (beta B2 gamma L). In the second mutant, the N- and C-terminal arms of 15- and 12-residues length were deleted (beta B2 delta NC). The beta B2 gamma L mutant is monomeric, whereas the beta B2 delta NC mutant forms dimers and tetramers that cannot be interconverted without denaturation. The spectral properties of the beta B2 mutants, as well as their stabilities against denaturants, resemble those of wild-type beta B2-crystallin, thus indicating that the overall peptide fold of the subunits is not changed significantly. We conclude that the peptide linker in beta B2-crystallin is necessary for dimerization, whereas the N- and C-terminal arms appear to be involved in preventing the formation of higher homo-oligomers.


Assuntos
Cristalinas/química , Conformação Proteica , Sequência de Aminoácidos , Sequência de Bases , Dicroísmo Circular , Clonagem Molecular , Cristalinas/efeitos dos fármacos , Cristalinas/genética , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...