Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(7): 1241-1249, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324399

RESUMO

The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.

2.
Struct Dyn ; 10(5): 054302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799711

RESUMO

Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.

3.
Nat Chem ; 15(10): 1408-1414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620544

RESUMO

Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment. Here, we experimentally and theoretically show that, for solvated paradigmatic intermediate-mass Al3+ ions, electronic relaxation involves two sequential solute-solvent electron transfer-mediated decay processes. The electron transfer-mediated decay steps correspond to sequential relaxation from Al5+ to Al3+ accompanied by formation of four ionized water molecules and two low-energy electrons. Such charge multiplication and the generated highly reactive species are expected to initiate cascades of radical reactions.

4.
Phys Chem Chem Phys ; 25(19): 13784-13791, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159272

RESUMO

We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2.

5.
Phys Rev Lett ; 130(15): 156901, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115858

RESUMO

The determination of depth profiles across interfaces is of primary importance in many scientific and technological areas. Photoemission spectroscopy is in principle well suited for this purpose, yet a quantitative implementation for investigations of liquid-vapor interfaces is hindered by the lack of understanding of electron-scattering processes in liquids. Previous studies have shown, however, that core-level photoelectron angular distributions (PADs) are altered by depth-dependent elastic electron scattering and can, thus, reveal information on the depth distribution of species across the interface. Here, we explore this concept further and show that the experimental anisotropy parameter characterizing the PAD scales linearly with the average distance of atoms along the surface normal obtained by molecular dynamics simulations. This behavior can be accounted for in the low-collision-number regime. We also show that results for different atomic species can be compared on the same length scale. We demonstrate that atoms separated by about 1 Å along the surface normal can be clearly distinguished with this method, achieving excellent depth resolution.

6.
Rev Sci Instrum ; 94(2): 023201, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859035

RESUMO

We have added a multipole ion trap to the existing photon-ion spectrometer at PETRA III (PIPE). Its hybrid structure combines a ring-electrode trap with a segmented 16-pole trap. The interaction of gases and ions with extreme ultraviolet radiation from the beamline P04 is planned to be investigated with the newly installed multipole trap. The research focus lies on radiation-induced chemical reactions that take place in the interstellar medium or in the atmospheres of planets, including natural as well as man-made processes that are important in the Earth's atmosphere. In order to determine the mass-to-charge ratio of the stored ions as efficiently as possible, we are using an ion time-of-flight spectrometer. With this technique, all stored ions can be detected simultaneously. To demonstrate the possibilities of the trap setup, two experiments have been carried out: The photoionization of xenon and the ion-impact ionization of norbornadiene. This type of ion-impact ionization can, in principle, also take place in planetary atmospheres. In addition to ionization by photon or ion impact, chemical reactions of the trapped ions with neutral atoms or molecules in the gas phase have been observed. The operation of the trap enables us to simulate conditions similar to those in the ionosphere.

7.
Chemphyschem ; 24(11): e202300061, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815408

RESUMO

Carbon 1s core-hole excitation of the molecular anion C2 - has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo-double-detachment shows a pronounced vibrational structure associated with 1 σ u → 3 σ g ${1\sigma _u \to 3\sigma _g }$ and 1 σ g → 1 π u ${1\sigma _g \to 1\pi _u }$ core excitations of the C2 - ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 - molecular anion by 0.2 Šupon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 - 1 σ u - 1 3 σ g 2 2 Σ u + ${1\sigma _u^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _u^ + }$ and 1 σ g - 1 3 σ g 2 2 Σ g + ${1\sigma _g^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _g^ + }$ core-excited levels.

8.
Chem Sci ; 13(6): 1789-1800, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282626

RESUMO

We investigate interatomic Coulombic decay in NeKr dimers after neon inner-valence photoionization [Ne+(2s-1)] using a synchrotron light source. We measure with high energy resolution the two singly charged ions of the Coulomb-exploding dimer dication and the photoelectron in coincidence. By carefully tracing the post-collision interaction between the photoelectron and the emitted ICD electron we are able to probe the temporal evolution of the state as it decays. Although the ionizing light pulses are 80 picoseconds long, we determine the lifetime of the intermediate dimer cation state and visualize the contraction of the nuclear structure on the femtosecond time scale.

9.
Phys Rev Lett ; 128(5): 053001, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179929

RESUMO

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40 keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

10.
Phys Rev Lett ; 129(25): 253201, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608244

RESUMO

We investigate experimentally and theoretically the C and O 1s photoionization of fixed-in-space CO molecules at a photon energy of 905 eV. We find a significant dependence of the photoelectron angular distributions on the direction of propagation of the ionizing radiation. It results from an interplay of nondipole effects, on one hand, and molecular effects, on the other. The nondipole effects lead to an increase of the emission probability in the forward direction along the light propagation, and the photoelectron wave being scattered by the molecular potential gives rise to a strong peak in the direction of the atom neighboring the emitter site. These effects can either conspire or extenuate each other, depending on the photoelectron emission direction and molecular orientation in space.

11.
Phys Rev Lett ; 127(10): 103201, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533326

RESUMO

We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s photoelectrons in coincidence with fragment ions, we deduce the molecule's orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase.

12.
Rev Sci Instrum ; 92(2): 023205, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648096

RESUMO

Many samples of current interest in molecular physics and physical chemistry exist in the liquid phase and are vaporized for use in gas cells, diffuse gas targets, or molecular gas jets. For some of these techniques, the large sample consumption is a limiting factor. When rare, expensive molecules such as custom-made chiral molecules or species with isotopic labels are used, wasting them in the exhaust line of the pumps is quite an expensive and inefficient approach. Therefore, we developed a closed-loop recycling system for molecules with vapor pressures below atmospheric pressure. Once filled, only a few valves have to be adjusted, and a cold trap must be moved after each phase of recycling. The recycling efficiency per turn exceeds 95%.

13.
Phys Rev Lett ; 124(8): 083203, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167340

RESUMO

We report on new measurements of m-fold photodetachment (m=2-5) of carbon anions via K-shell excitation and ionization. The experiments were carried out employing the photon-ion merged-beams technique at a synchrotron light source. While previous measurements were restricted to double detachment (m=2) and to just the lowest-energy K-shell resonance at about 282 eV, our absolute experimental m-fold detachment cross sections at photon energies of up to 1000 eV exhibit a wealth of new thresholds and resonances. We tentatively identify these features with the aid of detailed atomic-structure calculations. In particular, we find unambiguous evidence for fivefold detachment via double K-hole production.

14.
Phys Rev Lett ; 124(4): 043201, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058761

RESUMO

We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization.

15.
Phys Rev Lett ; 123(19): 193001, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765203

RESUMO

We investigate K-shell ionization of N_{2} at 40 keV photon energy. Using a cold target recoil ion momentum spectroscopy reaction microscope, we determine the vector momenta of the photoelectron, the Auger electron, and both N^{+} fragments. These fully differential data show that the dissociation process of the N_{2}^{2+} ion is significantly modified not only by the recoil momentum of the photoelectron but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30∶70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion.

16.
Phys Rev Lett ; 123(4): 043202, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491235

RESUMO

It is commonly accepted that the magnitude of a photoelectron circular dichroism (PECD) is governed by the ability of an outgoing photoelectron wave packet to probe the chiral asymmetry of a molecule. To be able to accumulate this characteristic asymmetry while escaping the chiral ion, photoelectrons need to have relatively small kinetic energies of up to a few tens of electron volts. Here, we demonstrate a substantial PECD for very fast photoelectrons above 500 eV kinetic energy released from methyloxirane by a participator resonant Auger decay of its lowermost O 1s excitation. This effect emerges as a result of the Fano interference between the direct and resonant photoionization pathways, notwithstanding that their individual effects are negligibly small. The resulting dichroic parameter has an anomalous dispersion: It changes its sign across the resonance, which can be considered as an analogue of the Cotton effect in the x-ray regime.

17.
Phys Rev Lett ; 123(24): 243201, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922823

RESUMO

We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.

18.
Phys Rev Lett ; 121(17): 173003, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411931

RESUMO

We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.

19.
Phys Rev Lett ; 121(8): 083002, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192586

RESUMO

We report on a direct method to measure the interatomic potential energy curve of diatomic systems. A cold target recoil ion momentum spectroscopy reaction microscope was used to measure the squares of the vibrational wave functions of H_{2}, He_{2}, Ne_{2}, and Ar_{2}. The Schrödinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.

20.
Nat Commun ; 9(1): 2259, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872047

RESUMO

The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H2' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσu orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...