Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466775

RESUMO

RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Retroalimentação , Fator sigma/genética , Fator sigma/metabolismo , Fosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38077006

RESUMO

RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.

3.
Appl Environ Microbiol ; 88(3): e0148621, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818102

RESUMO

Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but these only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but new methods are needed for the efficient transformation of large DNA molecules into S. aureus to "boot-up" (i.e., rescue) infectious phages. We presented a new, efficient, and reproducible DNA transformation method, NEST (non-electroporation Staphylococcus transformation), for S. aureus to boot-up purified phage genomic DNA (at least 150 kb in length) and whole yeast-assembled synthetic phage genomes. This method was a powerful new tool for the transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. IMPORTANCE The continued emergence of antibiotic-resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional nonmodel Siphophage from a constructed synthetic genome. This method will facilitate the engineering of Staphylococcus and Enterococcus phages for therapeutic applications and the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.


Assuntos
Fagos de Staphylococcus , Staphylococcus aureus , DNA Viral/genética , Humanos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/virologia , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia
4.
Genes Dev ; 33(11-12): 718-732, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30975721

RESUMO

The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Estabilidade Proteica , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
5.
Biochemistry ; 58(13): 1738-1750, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843689

RESUMO

Temperature-sensitive (Ts) mutants are important tools for understanding the role of essential gene(s), but their molecular basis is not well understood. We use CcdB ( Controller of Cell Death protein B) as a model system to explore the effects of Ts mutations on protein stability, folding, and ligand binding. Previously isolated Ts CcdB mutants fall broadly into two categories, namely, buried site (<5% accessibility) and active site (involved in DNA gyrase binding). Several mutants from each category were characterized. It was found that buried-site Ts mutants had decreased stability and foldability, higher aggregation propensity, and, in most cases, reduced affinity for gyrase at both permissive and restrictive temperatures. In contrast, exposed, active-site Ts mutants of CcdB exhibited stability either higher than or similar to that of the wild type and weakened inhibition of DNA gyrase function and/or reduced affinity for gyrase at a higher temperature. At all temperatures, Ts mutations at exposed, active-site residues primarily decrease specific activity without affecting protein levels, while Ts mutations at most buried residues decrease both specific activity and protein levels. Ts phenotypes in both cases arise because total activity is decreased below the threshold required for survival at the restrictive temperature but remains above it at the permissive temperatures. For several mutants, Ts phenotypes were ameliorated upon overexpression of the trigger factor chaperone, suggesting that Ts phenotypes may result from mutational effects on in vivo protein folding rather than on protein stability. This study delineates the diverse factors that contribute to Ts phenotypes. These insights can facilitate rational design of Ts mutants.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Mutação , Fenótipo , Agregados Proteicos , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Temperatura
6.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674066

RESUMO

One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccdO157) and the ccd operon from the F plasmid (ccdF), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccdF and ccdO157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence.IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.


Assuntos
Proteínas de Bactérias/genética , Tolerância a Medicamentos/genética , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/genética , Óperon , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos
7.
Nature ; 539(7627): 38-39, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808186
8.
Mol Biol Evol ; 33(11): 2960-2975, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27563054

RESUMO

Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations.


Assuntos
Escherichia coli/genética , Mutagênese , Mutação , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Fenótipo , Conformação Proteica , Estabilidade Proteica , Proteínas/genética , Análise de Sequência de Proteína , Relação Estrutura-Atividade
9.
Microb Cell Fact ; 15: 11, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26767617

RESUMO

BACKGROUND: Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. RESULTS: Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) from a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using (13)C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. CONCLUSIONS: We anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.


Assuntos
Biocombustíveis , Metano/metabolismo , Methanosarcina/metabolismo , Methanosarcina/enzimologia , Oxirredutases/metabolismo
10.
Curr Opin Struct Biol ; 24: 63-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24721454

RESUMO

Multiple methods currently exist for rapid construction and screening of single-site saturation mutagenesis (SSM) libraries in which every codon or nucleotide in a DNA fragment is individually randomized. Nucleotide sequences of each library member before and after screening or selection can be obtained through deep sequencing. The relative enrichment of each mutant at each position provides information on its contribution to protein activity or ligand-binding under the conditions of the screen. Such saturation scans have been applied to diverse proteins to delineate hot-spot residues, stability determinants, and for comprehensive fitness estimates. The data have been used to design proteins with enhanced stability, activity and altered specificity relative to wild-type, to test computational predictions of binding affinity, and for protein model discrimination. Future improvements in deep sequencing read lengths and accuracy should allow comprehensive studies of epistatic effects, of combinational variation at multiple sites, and identification of spatially proximate residues.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese , Proteínas/genética , Animais , Biblioteca Gênica , Humanos , Modelos Moleculares , Proteínas/química
11.
J Biol Chem ; 289(7): 4191-205, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24375411

RESUMO

Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/metabolismo , Endorribonucleases/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Protease La/metabolismo , Recombinases Rec A/metabolismo , Estresse Fisiológico/fisiologia , Substituição de Aminoácidos , Antibacterianos/farmacologia , Domínio Catalítico , Proteínas de Ligação a DNA/genética , Endopeptidase Clp/genética , Endorribonucleases/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Mutação de Sentido Incorreto , Protease La/genética , Recombinases Rec A/genética , Estresse Fisiológico/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 109(31): 12497-502, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802647

RESUMO

Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Fator F/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Óperon/fisiologia , Proteínas de Bactérias/genética , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Loci Gênicos/fisiologia , Mutagênese Sítio-Dirigida , Protease La/genética , Protease La/metabolismo
13.
Structure ; 20(2): 371-81, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325784

RESUMO

A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Análise por Conglomerados , Simulação por Computador , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...