Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329812

RESUMO

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.


Assuntos
Adenocarcinoma , Refluxo Biliar , Neoplasias Esofágicas , Refluxo Gastroesofágico , Microbioma Gastrointestinal , Proantocianidinas , Humanos , Ratos , Animais , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Proantocianidinas/metabolismo , Microbioma Gastrointestinal/fisiologia , Disbiose/tratamento farmacológico , Ratos Sprague-Dawley , Adenocarcinoma/genética , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/genética , Inflamação/tratamento farmacológico , Metaboloma
2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139823

RESUMO

We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.

3.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662411

RESUMO

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammatory-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague Dawley rats, with or without reflux-induction received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis, and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/P53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Clostridium perfringens, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory and immune-implicated proteins and genes including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1ß, Lbp, Lcn2, Myd88, Nfkb1, Tlr2 and Tlr4 aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation and cellular damage.

4.
Sci Rep ; 12(1): 8289, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585122

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and debilitating pain disorder of the bladder and urinary tract with poorly understood etiology. A definitive diagnosis of IC/BPS can be challenging because many symptoms are shared with other urological disorders. An analysis of urine presents an attractive and non-invasive resource for monitoring and diagnosing IC/BPS. The antiproliferative factor (APF) peptide has been previously identified in the urine of IC/BPS patients and is a proposed biomarker for the disorder. Nevertheless, other small urinary peptides have remained uninvestigated in IC/BPS primarily because protein biomarker discovery efforts employ protocols that remove small endogenous peptides. The purpose of this study is to investigate the profile of endogenous peptides in IC/BPS patient urine, with the goal of identifying putative peptide biomarkers. Here, a non-targeted peptidomics analysis of urine samples collected from IC/BPS patients were compared to urine samples from asymptomatic controls. Our results show a general increase in the abundance of urinary peptides in IC/BPS patients, which is consistent with an increase in inflammation and protease activity characteristic of this disorder. In total, 71 peptides generated from 39 different proteins were found to be significantly altered in IC/BPS. Five urinary peptides with high variable importance in projection (VIP) coefficients were found to reliably differentiate IC/BPS from healthy controls by receiver operating characteristic (ROC) analysis. In parallel, we also developed a targeted multiple reaction monitoring method to quantify the relative abundance of the APF peptide from patient urine samples. Although the APF peptide was found in moderately higher abundance in IC/BPS relative to control urine, our results show that the APF peptide was inconsistently present in urine, suggesting that its utility as a sole biomarker of IC/BPS may be limited. Overall, our results revealed new insights into the profile of urinary peptides in IC/BPS that will aid in future biomarker discovery and validation efforts.


Assuntos
Cistite Intersticial , Biomarcadores/urina , Cistite Intersticial/diagnóstico , Humanos , Inflamação , Peptídeos , Bexiga Urinária
5.
Sci Rep ; 11(1): 1521, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452279

RESUMO

Postoperative delirium is the most common complication among older adults undergoing major surgery. The pathophysiology of delirium is poorly understood, and no blood-based, predictive markers are available. We characterized the plasma metabolome of 52 delirium cases and 52 matched controls from the Successful Aging after Elective Surgery (SAGES) cohort (N = 560) of patients ≥ 70 years old without dementia undergoing scheduled major non-cardiac surgery. We applied targeted mass spectrometry with internal standards and pooled controls using a nested matched case-control study preoperatively (PREOP) and on postoperative day 2 (POD2) to identify potential delirium risk and disease markers. Univariate analyses identified 37 PREOP and 53 POD2 metabolites associated with delirium and multivariate analyses achieved significant separation between the two groups with an 11-metabolite prediction model at PREOP (AUC = 83.80%). Systems biology analysis using the metabolites with differential concentrations rendered "valine, leucine, and isoleucine biosynthesis" at PREOP and "citrate cycle" at POD2 as the most significantly enriched pathways (false discovery rate < 0.05). Perturbations in energy metabolism and amino acid synthesis pathways may be associated with postoperative delirium and suggest potential mechanisms for delirium pathogenesis. Our results could lead to the development of a metabolomic delirium predictor.


Assuntos
Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Biologia Computacional/métodos , Delírio/etiologia , Delírio do Despertar/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Metabolômica/métodos , Complicações Pós-Operatórias/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...