Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201187

RESUMO

An understanding regarding impacts of growth-related myopathies, i.e., white striping (WS) and wooden breast (WB), on the quality of dietary protein from cooked chicken breast is still limited. This study aimed at comparing protein content and in vitro protein digestion and estimating the in vitro protein digestibility corrected amino acid score (PDCAAS) of cooked chicken meat exhibiting different abnormality levels (i.e., normal, WS, and WS + WB). The results show that the WS + WB samples exhibited lower protein content, greater cooking loss, and greater lipid oxidation than those of normal samples (p < 0.05). No differences in protein carbonyls or the myofibril fragmentation index were found (p ≥ 0.05). Cooked samples were hydrolyzed in vitro using digestive enzyme mixtures that subsequently mimicked the enzymatic reactions in oral, gastric, and intestinal routes. The WS + WB samples exhibited greater values of free NH2 and degree of hydrolysis than the others at all digestion phases (p < 0.05), suggesting a greater proteolytic susceptibility. The in vitro PDCAAS of the WS + WB samples was greater than that of the other samples for pre-school children, school children, and adults (p < 0.05). Overall, the findings suggest that the cooked chicken breast with the WS + WB condition might provide greater protein digestibility and availability than WS and normal chicken breasts.

2.
Poult Sci ; 103(1): 103261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992618

RESUMO

This study investigated the impacts of Wooden Breast (WB) abnormality on in vitro protein digestibility and cytotoxicity of cooked chicken breast meat. Chicken breasts without (non-WB, n = 6) or with severe WB condition (WB, n = 6) were cooked and subjected to static in vitro protein digestion. The results showed no significant differences in free-NH2, degree of hydrolysis and distribution of peptide molecular weight between non-WB and WB samples at late intestinal digestion (P5), suggesting no adverse effects of WB on protein digestibility. Based on peptidomic analysis, P5 fraction of WB showed greater content of peptides with oxidative modification than that of non-WB. Untargeted metabolomics did not find any metabolites with potential toxicity either in non-WB and WB. Hydrolyzed non-WB and WB (1.56-100 µg/mL) did not affect viability of Caco-2 and Vero cells but addition of WB samples reduced Caco-2 cell viability compared with non-WB.


Assuntos
Galinhas , Doenças Musculares , Chlorocebus aethiops , Animais , Humanos , Células CACO-2 , Células Vero , Músculos Peitorais/química , Carne/análise , Doenças Musculares/etiologia , Doenças Musculares/veterinária , Proteínas/análise
3.
Foods ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804668

RESUMO

Chicken meat from spent laying hens (SHs) has been considered as nutritive as the meat of commercial broilers (CBs) based on chemical composition. High insoluble collagen in SH meat might reduce protein digestibility and bio-accessibility compared to CB meat. This study aimed at comparing the in vitro protein digestibility of CB and SH cooked breast meat. In the first part, CB samples were digested using two static in vitro digestion methods and collected at different digestion points for determining the degree of hydrolysis (DH). The method providing a greater DH value was chosen for comparing protein digestibility between CB and SH samples. The activities of used enzymes during in vitro digestion were evaluated based on bicinchoninic acid assay 2,4,6-trinitrobenzenesulfonic acid colorimetric method, gas chromatography-mass spectrometry, and sodium dodecyl sulfate-polyacrylamide electrophoresis. Particle size distribution of solid content collected from hydrolysate was also determined. The results showed that after digestion, CB showed 1−3 mg/mL protein concentration lower, while 7−13% DH and 50−96 µmoL/g protein-free NH2 groups higher when compared to those of SH. Based on sodium dodecyl sulfate-polyacrylamide electrophoresis, CB samples exhibited greater intensity of band at MW < 15 kDa than that of SH. Regarding particle size in terms of volume weighted mean (D[4,3]), at the end of the oral phase, the end of the gastric phase, and the beginning of the intestinal phase, D[4,3] of the SH samples were 133.17 ± 2.16, 46.52 ± 2.20, and 112.96 ± 3.63 µm, respectively, which were greater than those of CB (53.28 ± 1.23, 35.59 ± 1.19, and 51.68 ± 1.25 µm). However, at the end of the intestinal phase, D[4,3] of SH and CB, which were 17.19 ± 1.69 and 17.52 ± 2.46 µm, respectively, did not significantly differ from each other. The findings suggested a greater in vitro protein digestibility of cooked CB breast meats than that of SH ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA