Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 192: 1-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34517051

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) promotes expression of a large number of antioxidant genes and multiple studies have described oxidative stress and impaired methylation in autism spectrum disorder (ASD), including decreased brain levels of methylcobalamin(III) (MeCbl). Here we report decreased expression of the Nrf2 gene (NFE2L2) in frontal cortex of ASD subjects, as well as differences in other genes involved in redox homeostasis. In pooled control and ASD correlation analyses, hydroxocobalamin(III) (OHCbl) was inversely correlated with NFE2L2 expression, while MeCbl and total cobalamin abundance were positively correlated with NFE2L2 expression. Levels of methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and cystathionine were positively correlated with NFE2L2 expression, while homocysteine (HCY) was negatively correlated. The relationship between Nrf2 activity and cobalamin was further supported by a bioinformatics-based comparison of cobalamin levels in different tissues with expression of a panel of 40 Nrf2-regulated genes, which yielded a strong correlation. Lastly, Nrf2-regulated gene expression was also correlated with expression of intracellular cobalamin trafficking and processing genes, such as MMADHC and MTRR. These findings highlight a previously unrecognized relationship between the antioxidant-promoting role of Nrf2 and cobalamin status, which is dysfunctional in ASD.


Assuntos
Transtorno Autístico/metabolismo , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Vitamina B 12/metabolismo , Transtorno Autístico/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Vitamina B 12/genética
2.
Front Oncol ; 7: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424758

RESUMO

Glioblastoma is an exceptionally difficult cancer to treat. Cancer is universally marked by epigenetic changes, which play key roles in sustaining a malignant phenotype, in addition to disease progression and patient survival. Studies have shown strong links between the cellular redox state and epigenetics. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor that upregulates endogenous antioxidant production, and is aberrantly expressed in many cancers, including glioblastoma. Methylation of DNA and histones provides a mode of epigenetic regulation, and cobalamin-dependent reactions link the redox state to methylation. Antagonists of dopamine receptor subtype 4 (D4 receptor) were recently shown to restrict glioblastoma stem cell growth by downregulating trophic signaling, resulting in inhibition of functional autophagy. In addition to stimulating glioblastoma stem cell growth, D4 receptors have the unique ability to catalyze cobalamin-dependent phospholipid methylation. Therefore, D4 receptors represent an important node in a molecular reflex pathway involving Nrf2 and cobalamin, operating in conjunction with redox status and methyl group donor availability. In this article, we describe the redox-related effects of Nrf2, cobalamin metabolism, and the D4 receptor on the regulation of the epigenetic state in glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA