Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326460

RESUMO

G-protein-coupled receptors (GPCRs) represent a family with over 800 members in humans, and one-third of these are targets for approved drugs. A large number of GPCRs have unknown physiologic roles. Here, we investigated GPR27, an orphan GPCR belonging to the family of super conserved receptor expressed in the brain, with unknown functions. Cytosolic levels of L-lactate ([lactate]i), the end product of aerobic glycolysis, were measured with the Laconic fluorescence resonance energy transfer nanosensor. In single 3T3 wild-type (WT) embryonic cells, the application of 8535 (1 µM), a surrogate agonist known to activate GPR27, resulted in an increase in [lactate]i. Similarly, an increase was recorded in primary rat astrocytes, a type of neuroglial cell abundant in the brain, which contain glycogen and express enzymes of aerobic glycolysis. In CRISPR-Cas9 GPR27 knocked out 3T3 cells, the 8535-induced increase in [lactate]i was reduced compared with WT controls. Transfection of the GPR27-carrying plasmid into the 3T3KOGPR27 cells rescued the 8535-induced increase in [lactate]i. These results indicate that stimulation of GPR27 enhances aerobic glycolysis and L-lactate production in 3T3 cells and astrocytes. Interestingly, in the absence of GPR27 in 3T3 cells, resting [lactate]i was increased in comparison with controls, further supporting the view that GPR27 regulates L-lactate homeostasis.


Assuntos
Astrócitos , Ácido Láctico , Células 3T3 , Animais , Astrócitos/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Camundongos , Ratos , Receptores Acoplados a Proteínas G/metabolismo
3.
Acta Physiol (Oxf) ; 228(3): e13399, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31597221

RESUMO

AIM: Astrocytes play a homeostatic role in the central nervous system and influence numerous aspects of neurophysiology via intracellular trafficking of vesicles. Intermediate filaments (IFs), also known as nanofilaments, regulate a number of cellular processes including organelle trafficking and adult hippocampal neurogenesis. We have recently demonstrated that the IF protein nestin, a marker of neural stem cells and immature and reactive astrocytes, is also expressed in some astrocytes in the unchallenged hippocampus and regulates neurogenesis through Notch signalling from astrocytes to neural stem cells, possibly via altered trafficking of vesicles containing the Notch ligand Jagged-1. METHODS: We thus investigated whether nestin affects vesicle dynamics in astrocytes by examining single vesicle interactions with the plasmalemma and vesicle trafficking with high-resolution cell-attached membrane capacitance measurements and confocal microscopy. We used cell cultures of astrocytes from nestin-deficient (Nes-/- ) and wild-type (wt) mice, and fluorescent dextran and Fluo-2 to examine vesicle mobility and intracellular Ca2+ concentration respectively. RESULTS: Nes-/- astrocytes exhibited altered sizes of vesicles undergoing full fission and transient fusion, altered vesicle fusion pore geometry and kinetics, decreased spontaneous vesicle mobility and altered ATP-evoked mobility. Purinergic stimulation evoked Ca2+ signalling that was slightly attenuated in Nes-/- astrocytes, which exhibited more oscillatory Ca2+ responses than wt astrocytes. CONCLUSION: These results demonstrate at the single vesicle level that nestin regulates vesicle interactions with the plasmalemma and vesicle trafficking, indicating its potential role in astrocyte vesicle-based communication.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Nestina/metabolismo , Animais , Transporte Biológico , Fusão Celular , Células Cultivadas , Exocitose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nestina/genética , Transdução de Sinais
4.
Mol Neurobiol ; 56(9): 5971-5986, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30701416

RESUMO

Astroglia, the primary homeostatic cells of the central nervous system, play an important role in neuroinflammation. They act as facultative immunocompetent antigen-presenting cells (APCs), expressing major histocompatibility complex (MHC) class II antigens upon activation with interferon (IFN)-γ and possibly other proinflammatory cytokines that are upregulated in disease states, including multiple sclerosis (MS). We characterized the anti-inflammatory effects of fingolimod (FTY720), an established drug for MS, and its phosphorylated metabolite (FTY720-P) in IFN-γ-activated cultured rat astrocytes. The expression of MHC class II compartments, ß2 adrenergic receptor (ADR-ß2), and nuclear factor kappa-light-chain enhancer of activated B cells subunit p65 (NF-κB p65) was quantified in immunofluorescence images acquired by laser scanning confocal microscopy. In addition, MHC class II-enriched endocytotic vesicles were labeled by fluorescent dextran and their mobility analyzed in astrocytes subjected to different treatments. FTY720 and FTY720-P treatment significantly reduced the number of IFN-γ-induced MHC class II compartments and substantially increased ADR-ß2 expression, which is otherwise small or absent in astrocytes in MS. These effects could be partially attributed to the observed decrease in NF-κB p65 expression, because the NF-κB signaling cascade is activated in inflammatory processes. We also found attenuated trafficking and secretion from dextran-labeled endo-/lysosomes that may hinder efficient delivery of MHC class II molecules to the plasma membrane. Our data suggest that FTY720 and FTY720-P at submicromolar concentrations mediate anti-inflammatory effects on astrocytes by suppressing their action as APCs, which may further downregulate the inflammatory process in the brain, constituting the therapeutic effect of fingolimod in MS.


Assuntos
Astrócitos/patologia , Cloridrato de Fingolimode/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Interferon gama/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Contagem de Células , Células Cultivadas , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Dextranos/metabolismo , Feminino , Cloridrato de Fingolimode/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ratos Wistar , Receptores Adrenérgicos beta 2/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...