Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(1): e12930, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272450

RESUMO

Neuroligins are synaptic cell adhesion proteins with a role in synaptic function, implicated in neurodevelopmental disorders. The autism spectrum disorder-associated substitution Arg451Cys (R451C) in NLGN3 promotes a partial misfolding of the extracellular domain of the protein leading to retention in the endoplasmic reticulum (ER) and the induction of the unfolded protein response (UPR). The reduced trafficking of R451C NLGN3 to the cell surface leads to altered synaptic function and social behavior. A screening in HEK-293 cells overexpressing NLGN3 of 2662 compounds (FDA-approved small molecule drug library), led to the identification of several glucocorticoids such as alclometasone dipropionate, desonide, prednisolone sodium phosphate, and dexamethasone (DEX), with the ability to favor the exit of full-length R451C NLGN3 from the ER. DEX improved the stability of R451C NLGN3 and trafficking to the cell surface, reduced the activation of the UPR, and increased the formation of artificial synapses between HEK-293 and hippocampal primary neurons. The effect of DEX was validated on a novel model system represented by neural stem progenitor cells and differentiated neurons derived from the R451C NLGN3 knock-in mouse, expressing the endogenous protein. This work shows a potential rescue strategy for an autism-linked mutation affecting cell surface trafficking of a synaptic protein.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Glucocorticoides , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sinapses/metabolismo
2.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411275

RESUMO

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Assuntos
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patologia , Haploinsuficiência/genética , Metabolismo dos Lipídeos/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Fenótipo , Autofagia/genética , Tretinoína/farmacologia , Tretinoína/metabolismo , Lipídeos
3.
Neuropharmacology ; 184: 108381, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166544

RESUMO

Cell adhesion generally involves formation of homophilic or heterophilic protein complexes between two cells to form transcellular junctions. Neural cell-adhesion members of the α/ß-hydrolase fold superfamily of proteins use their extracellular or soluble cholinesterase-like domain to bind cognate partners across cell membranes, as illustrated by the neuroligins. These cell-adhesion molecules currently comprise the synaptic organizers neuroligins found in all animal phyla, along with three proteins found only in invertebrates: the guidance molecule neurotactin, the glia-specific gliotactin, and the basement membrane protein glutactin. Although these proteins share a cholinesterase-like fold, they lack one or more residues composing the catalytic triad responsible for the enzymatic activity of the cholinesterases. Conversely, they are found in various subcellular localisations and display specific disulfide bonding and N-glycosylation patterns, along with individual surface determinants possibly associated with recognition and binding of protein partners. Formation of non-covalent dimers typical of the cholinesterases is documented for mammalian neuroligins, yet whether invertebrate neuroligins and their neurotactin, gliotactin and glutactin relatives also form dimers in physiological conditions is unknown. Here we provide a brief overview of the localization, function, evolution, and conserved versus individual structural determinants of these cholinesterase-like cell-adhesion proteins. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Colinesterases/química , Colinesterases/genética , Matriz Extracelular/química , Matriz Extracelular/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Colinesterases/metabolismo , Mapeamento Cromossômico/métodos , Matriz Extracelular/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Nat Commun ; 11(1): 5171, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057002

RESUMO

Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function.


Assuntos
Região CA3 Hipocampal/fisiologia , Proteínas de Transporte/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Membrana/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Células Piramidais/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteômica , Ratos , Sinaptossomos/metabolismo
5.
Neurosci Biobehav Rev ; 119: 37-51, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991906

RESUMO

The genetics underlying autism spectrum disorder (ASD) is complex and heterogeneous, and de novo variants are found in genes converging in functional biological processes. Neuronal communication, including trans-synaptic signaling involving two families of cell-adhesion proteins, the presynaptic neurexins and the postsynaptic neuroligins, is one of the most recurrently affected pathways in ASD. Given the role of these proteins in determining synaptic function, abnormal synaptic plasticity and failure to establish proper synaptic contacts might represent mechanisms underlying risk of ASD. More than 30 mutations have been found in the neuroligin genes. Most of the resulting residue substitutions map in the extracellular, cholinesterase-like domain of the protein, and impair protein folding and trafficking. Conversely, the stalk and intracellular domains are less affected. Accordingly, several genetic animal models of ASD have been generated, showing behavioral and synaptic alterations. The aim of this review is to discuss the current knowledge on ASD-linked mutations in the neuroligin proteins and their effect on synaptic function, in various brain areas and circuits.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais , Animais , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios , Sinapses
6.
Chemistry ; 26(8): 1834-1845, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31773792

RESUMO

Chemical chaperones prevent protein aggregation. However, the use of chemical chaperones as drugs against diseases due to protein aggregation is limited by the very high active concentrations (mm range) required to mediate their effect. One of the most common chemical chaperones is 4-phenylbutyric acid (4-PBA). Despite its unfavorable pharmacokinetic properties, 4-PBA was approved as a drug to treat ornithine cycle diseases. Here, we report that 2-isopropyl-4-phenylbutanoic acid (5) has been found to be 2-10-fold more effective than 4-PBA in several in vitro models of protein aggregation. Importantly, compound 5 reduced the secretion rate of autism-linked Arg451Cys Neuroligin3 (R451C NLGN3).


Assuntos
Fenilbutiratos/química , Proteínas/química , Animais , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Fenilbutiratos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína , Proteínas/metabolismo , Ratos
7.
Structure ; 27(6): 893-906.e9, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956130

RESUMO

In the developing brain, cell-surface proteins play crucial roles, but their protein-protein interaction network remains largely unknown. A proteomic screen identified 200 interactions, 89 of which were not previously published. Among these interactions, we find that the IgLONs, a family of five cell-surface neuronal proteins implicated in various human disorders, interact as homo- and heterodimers. We reveal their interaction patterns and report the dimeric crystal structures of Neurotrimin (NTRI), IgLON5, and the neuronal growth regulator 1 (NEGR1)/IgLON5 complex. We show that IgLONs maintain an extended conformation and that their dimerization occurs through the first Ig domain of each monomer and is Ca2+ independent. Cell aggregation shows that NTRI and NEGR1 homo- and heterodimerize in trans. Taken together, we report 89 unpublished cell-surface ligand-receptor pairs and describe structural models of trans interactions of IgLONs, showing that their structures are compatible with a model of interaction across the synaptic cleft.


Assuntos
Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Ligantes , Modelos Moleculares , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
8.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857516

RESUMO

Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Receptor Muscarínico M2/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Interferência de RNA , Receptor Muscarínico M2/agonistas , Transdução de Sinais/efeitos dos fármacos
9.
Eur J Neurosci ; 47(6): 701-708, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28921757

RESUMO

Autism spectrum disorders (ASDs) comprise a heterogeneous group of disorders with a complex genetic etiology. Current theories on the pathogenesis of ASDs suggest that they might arise from an aberrant synaptic transmission affecting specific brain circuits and synapses. The striatum, which is part of the basal ganglia circuit, is one of the brain regions involved in ASDs. Mouse models of ASDs have provided evidence for an imbalance between excitatory and inhibitory neurotransmission. Here, we investigated the expression of long-term synaptic plasticity at corticostriatal glutamatergic synapses in the dorsal striatum of the R451C-NL3 phenotypic mouse model of autism. This mouse model carries the human R451C mutation in the neuroligin 3 (NL3) gene that has been associated with highly penetrant autism in a Swedish family. The R451C-NL3 mouse has been shown to exhibit autistic-like behaviors and alterations of synaptic transmission in different brain areas. However, excitatory glutamatergic transmission and its long-term plasticity have not been investigated in the dorsal striatum so far. Our results indicate that the expression of long-term synaptic depression (LTD) at corticostriatal glutamatergic synapses in the dorsal striatum is impaired by the R451C-NL3 mutation. A partial rescue of LTD was obtained by exogenous activation of cannabinoid CB1 receptors or enhancement of the endocannabinoid tone, suggesting that an altered cannabinoid drive might underlie the deficit of synaptic plasticity in the dorsal striatum of R451C-NL3 mice.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/genética , Endocanabinoides/metabolismo , Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Depressão Sináptica de Longo Prazo , Proteínas de Membrana/genética , Neostriado , Proteínas do Tecido Nervoso/genética , Receptor CB1 de Canabinoide/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neostriado/metabolismo , Neostriado/fisiopatologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia
10.
Biochem J ; 473(4): 423-34, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621873

RESUMO

Several forms of monogenic heritable autism spectrum disorders are associated with mutations in the neuroligin genes. The autism-linked substitution R451C in neuroligin3 induces local misfolding of its extracellular domain, causing partial retention in the ER (endoplasmic reticulum) of expressing cells. We have generated a PC12 Tet-On cell model system with inducible expression of wild-type or R451C neuroligin3 to investigate whether there is activation of the UPR (unfolded protein response) as a result of misfolded protein retention. As a positive control for protein misfolding, we also expressed the mutant G221R neuroligin3, which is known to be completely retained within the ER. Our data show that overexpression of either R451C or G221R mutant proteins leads to the activation of all three signalling branches of the UPR downstream of the stress sensors ATF6 (activating transcription factor 6), IRE1 (inositol-requiring enzyme 1) and PERK [PKR (dsRNA-dependent protein kinase)-like endoplasmic reticulum kinase]. Each branch displayed different activation profiles that partially correlated with the degree of misfolding caused by each mutation. We also show that up-regulation of BiP (immunoglobulin heavy-chain-binding protein) and CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein] was induced by both mutant proteins but not by wild-type neuroligin3, both in proliferative cells and cells differentiated to a neuron-like phenotype. Collectively, our data show that mutant R451C neuroligin3 activates the UPR in a novel cell model system, suggesting that this cellular response may have a role in monogenic forms of autism characterized by misfolding mutations.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Resposta a Proteínas não Dobradas , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Fosforilação , Ratos , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...