Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(7): 1697-1701, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36779705

RESUMO

The possibilities to extract incompletely characterized molecular parameters from experimental thermal rate constants for dissociation and recombination reactions are explored. The reaction system CF4 (+M) ⇄ CF3 + F (+M) is chosen as a representative example. A set of falloff curves is constructed and compared with the available experimental database. Agreement is achieved by minor (unfortunately not separable) adjustments of reaction enthalpy and collisional energy transfer parameters.

2.
J Phys Chem A ; 126(47): 8871-8877, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399787

RESUMO

Monitoring UV absorption signals of SiF2 and SiF, the thermal dissociation reactions of SiF4 and SiF2 were studied in shock waves. Rationalizing the experimental observations by standard unimolecular rate theory in combination with quantum-chemical calculations of the reaction potentials, rate constants for the thermal dissociation reactions of SiF4, SiF3, and SiF2 and their reverse recombination reactions were determined over broad temperature and pressure ranges. A comparison of fluorosilicon and fluorocarbon chemistry was finally made.

6.
J Chem Phys ; 152(12): 124302, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241136

RESUMO

New flowing afterglow/Langmuir probe investigations of electronic attachment to SF6 are described. Thermal attachment rate constants are found to increase from 1.5 × 10-7 cm3 s-1 at 200 K to 2.3 × 10-7 cm3 s-1 at 300 K. Attachment rate constants over the range of 200-700 K (from the present work and the literature), together with earlier measurements of attachment cross sections, are analyzed with respect to electronic and nuclear contributions. The latter suggest that only a small nuclear barrier (of the order of 20 meV) on the way from SF6 to SF6 - has to be overcome. The analysis shows that not only s-waves but also higher partial waves have to be taken into account. Likewise, finite-size effects of the neutral target contribute in a non-negligible manner.

7.
J Am Soc Mass Spectrom ; 30(10): 1828-1834, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31140079

RESUMO

We treat the competition between autodetachment of electrons and unimolecular dissociation of excited molecular anions as a rigid-/loose-activated complex multichannel reaction system. To start, the temperature and pressure dependences under thermal excitation conditions are represented in terms of falloff curves of separated single-channel processes within the framework of unimolecular reaction kinetics. Channel couplings, caused by collisional energy transfer and "rotational channel switching" due to angular momentum effects, are introduced afterward. The importance of angular momentum considerations is stressed in addition to the usual energy treatment. Non-thermal excitation conditions, such as typical for chemical activation and complex-forming bimolecular reactions, are considered as well. The dynamics of excited SF6- anions serves as the principal example. Other anions such as CF3- and POCl3- are also discussed.

8.
J Phys Chem A ; 123(5): 1007-1014, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30633525

RESUMO

Two-channel and multichannel thermal unimolecular reactions are analyzed by simple models, starting with the calculation of separated-channel rate constants and accounting for intrinsic channel coupling afterward. Reactions with rigid- and with loose-activated complex channels are distinguished. Weak-collision, energy-transfer, effects are suggested to govern the competition between rigid-activated complex channels, while angular-momentum, "rotational channel switching", effects dominate the competition between rigid- and loose-activated complex channels. The models are tested against master equation treatments of the dissociations of formaldehyde and of glyoxal from the literature. Besides giving insight into the influence of various molecular input parameters, the present approach leads to compact representations of rate constants suitable for inclusion in databases.

9.
Phys Chem Chem Phys ; 20(16): 10561-10568, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616689

RESUMO

Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

10.
J Phys Chem A ; 121(21): 4058-4068, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28488864

RESUMO

The pressure and temperature dependences of the reactions of Fe+ with methyl halides CH3X (X = Cl, Br, I) in He were measured in a selected ion flow tube over the ranges 0.4 to 1.2 Torr and 300-600 K. FeX+ was observed for all three halides and FeCH3+ was observed for the CH3I reaction. FeCH3X+ adducts (for all X) were detected in all reactions. The results were interpreted assuming two-state reactivity with spin-inversions between sextet and quartet potentials. Kinetic modeling allowed for a quantitative representation of the experiments and for extrapolation to conditions outside the experimentally accessible range. The modeling required quantum-chemical calculations of molecular parameters and detailed accounting of angular momentum effects. The results show that the FeX+ products come via an insertion mechanism, while the FeCH3+ can be produced from either insertion or SN2 mechanisms, but the latter we conclude is unlikely at thermal energies. A statistical modeling cannot reproduce the competition between the bimolecular pathways in the CH3I reaction, indicating that some more direct process must be important.

11.
Phys Chem Chem Phys ; 18(45): 31064-31071, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27808307

RESUMO

To provide a deeper understanding of the kinetics of electron attachment to CF3, the six-dimensional potential energy surfaces of both CF3 and CF3- were developed by fitting ∼3000 ab initio points per surface at the AE-CCSD(T)-F12a/AVTZ level using the permutation invariant polynomial-neural network (PIP-NN) approach. The fitted potential energy surfaces for CF3 and CF3- had root mean square fitting errors relative to the ab initio calculations of 1.2 and 1.8 cm-1, respectively. The main active mode for the crossing between the two potential energy surfaces was identified as the umbrella bending mode of CF3 in C3v symmetry. The lowest energy crossing point is located at RCF = 1.306 Å and θFCF = 113.6° with the energy of 0.051 eV above the minimum of the CF3 electronic surface. This value is only slightly larger than the experimental data 0.026 ± 0.01 eV determined by kinetic modeling of electron attachment to CF3. The small discrepancy between the theoretical and experimentally measured values is analyzed.

12.
Phys Chem Chem Phys ; 18(26): 17592-6, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27307206

RESUMO

The thermal decomposition of CF4 (+Ar) → CF3 + F (+Ar) was studied in shock waves over the temperature range 2000-3000 K varying the bath gas concentration [Ar] between 4 × 10(-6) and 9 × 10(-5) mol cm(-3). It is shown that the reaction corresponds to the intermediate range of the falloff curve. By combination with room temperature data for the reverse reaction CF3 + F (+He) → CF4 (+He) and applying unimolecular rate theory, falloff curves over the temperature range 300-6000 K are modeled. A comparison with the reaction system CH4 (+M) ⇔ CH3 + H (+M) is made.

13.
J Phys Chem A ; 120(27): 5264-73, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27228310

RESUMO

The kinetics of the reaction CH3OCH3 + Fe(+) has been studied between 250 and 600 K in the buffer gas He at pressures between 0.4 and 1.6 Torr. Total rate constants and branching ratios for the formation of Fe(+)O(CH3)2 adducts and of Fe(+)OCH2 + CH4 products were determined. Quantum-chemical calculations provided the parameters required for an analysis in terms of statistical unimolecular rate theory. The analysis employed a recently developed simplified representation of the rates of complex-forming bimolecular reactions, separating association and chemical activation contributions. Satisfactory agreement between experimental results and kinetic modeling was obtained that allows for an extrapolation of the data over wide ranges of conditions. Possible reaction pathways with or without spin-inversion are discussed in relation to the kinetic modeling results.

14.
Phys Chem Chem Phys ; 17(30): 19700-8, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26126995

RESUMO

The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Ferro/química , Modelos Químicos , Óxidos de Nitrogênio/química , Termodinâmica
15.
Phys Chem Chem Phys ; 17(30): 19709-17, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26129708

RESUMO

The reactions of FeO(+) with H2 and of Fe(+) with N2O were studied with respect to the production and reactivity of electronically excited (4)Fe(+) cations. The reaction of electronic ground state (6)FeO(+) with H2 was found to predominantly produce electronically excited (4)Fe(+) as opposed to electronic ground state (6)Fe(+) corresponding to a spin-allowed reaction. (4)Fe(+) was observed to react with N2O with a rate constant of 2.3 (+0.3/-0.8) × 10(-11) cm(3) molecule(-1) s(-1), smaller than the ground state (6)Fe(+) rate constant of 3.2 (±0.5) × 10(-11) cm(3) molecule(-1) s(-1) (at room temperature). While the overall reaction of (6)FeO(+) with H2 within the Two-State-Reactivity concept is governed by efficient sextet-quartet spin-inversion in the initial reaction complex, the observation of predominant (4)Fe(+) production in the reaction is attributed to a much less efficient quartet-sextet back-inversion in the final reaction complex. Average spin-inversion probabilities are estimated by statistical modeling of spin-inversion processes and related to the properties of spin-orbit coupling along the reaction coordinate. The reaction of FeO(+) with H2 served as a source for (4)Fe(+), subsequently reacting with N2O. The measured rate constant has allowed for a more detailed understanding of the ground state (6)Fe(+) reaction with N2O, leading to a significantly improved statistical modeling of the previously measured temperature dependence of the reaction. In particular, evidence for the participation of electronically excited states of the reaction complex was found. Deexcitation of (4)Fe(+) by He was found to be slow, with a rate constant <3 × 10(-14) cm(3) molecule(-1) s(-1).


Assuntos
Hidrogênio/química , Ferro/química , Óxidos de Nitrogênio/química , Cátions/química , Método de Monte Carlo , Teoria Quântica , Temperatura , Termodinâmica
16.
J Phys Chem A ; 119(28): 7277-81, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25669352

RESUMO

Experimental data for the unimolecular decomposition of CS2 from the literature are analyzed by unimolecular rate theory with the goal of obtaining rate constants for the reverse reaction S + CS (+M) → CS2 (+M) over wide temperature and pressure ranges. The results constitute an important input for the kinetic modeling of CS2 oxidation. CS2 dissociation proceeds as a spin-forbidden process whose detailed properties are still not well understood. The role of the singlet-triplet transition involved is discussed.


Assuntos
Dissulfeto de Carbono/química , Pressão , Enxofre/química , Temperatura , Cinética , Modelos Químicos
17.
J Phys Chem A ; 119(28): 7263-9, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25611518

RESUMO

The reaction C2H5 + O2 (+ M) → C2H5O2 (+ M) was studied at 298 K at pressures of the bath gas M = Ar between 100 and 1000 bar. The transition from the falloff curve of an energy transfer mechanism to a high pressure range with contributions from the radical complex mechanism was observed. Further experiments were done between 188 and 298 K in the bath gas M = He at pressures in the range 0.7-2.0 Torr. The available data are analyzed in terms of unimolecular rate theory. An improved analytical representation of the temperature and pressure dependence of the rate constant is given for conditions where the chemical activation process C2H5 + O2 (+ M) → C2H4 + HO2 (+ M) is only of minor importance.


Assuntos
Hidrocarbonetos/química , Oxigênio/química , Pressão , Temperatura , Gases/química , Modelos Químicos , Oxirredução
18.
J Phys Chem A ; 118(34): 6789-97, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25077435

RESUMO

The reactions of FeO(+) with H2, D2, and HD were studied in detail from 170 to 670 K by employing a variable temperature selected ion flow tube apparatus. High level electronic structure calculations were performed and compared to previous theoretical treatments. Statistical modeling of the temperature and isotope dependent rate constants was found to reproduce all data, suggesting the reaction could be well explained by efficient crossing from the sextet to quartet surface, with a rigid near thermoneutral barrier accounting for both the inefficiency and strong negative temperature dependence of the reactions over the measured range of thermal energies. The modeling equally well reproduced earlier guided ion beam results up to translational temperatures of about 4000 K.


Assuntos
Deutério/química , Compostos Férricos/química , Ferro/química , Temperatura , Água/química , Simulação por Computador , Íons/química , Isótopos/química , Cinética , Modelos Químicos , Modelos Estatísticos
19.
J Phys Chem A ; 118(34): 6798-809, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25116264

RESUMO

A detailed chemical kinetic model for oxidation of CS2 has been developed, on the basis of ab initio calculations for key reactions, including CS2 + O2 and CS + O2, and data from literature. The mechanism has been evaluated against experimental results from static reactors, flow reactors, and shock tubes. The CS2 + O2 reaction forms OCS + SO, with the lowest energy path involving crossing from the triplet to the singlet surface. For CS + O2, which yields OCS + O, we found a high barrier to reaction, causing this step to be important only at elevated temperatures. The model predicts low temperature ignition delays and explosion limits accurately, whereas at higher temperatures it appears to overpredict both the induction time for CS2 oxidation and the formation rate of [O] upon ignition. The predictive capability of the model depends on the accuracy of the rate constant for the initiation step CS2 + O2, which is difficult to calculate due to the intersystem crossing, and the branching fraction for CS2 + O, which is measured only at low temperatures. The governing reaction mechanisms are outlined on the basis of calculations with the kinetic model.


Assuntos
Dissulfeto de Carbono/química , Modelos Químicos , Compostos de Enxofre/química , Cinética , Oxirredução , Oxigênio/química , Temperatura , Termodinâmica
20.
J Phys Chem A ; 118(11): 2029-39, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24568117

RESUMO

The temperature dependences of the rate constants and product branching ratios for the reactions of FeO(+) with CH4 and CD4 have been measured from 123 to 700 K. The 300 K rate constants are 9.5 × 10(-11) and 5.1 × 10(-11) cm(3) s(-1) for the CH4 and CD4 reactions, respectively. At low temperatures, the Fe(+) + CH3OH/CD3OD product channel dominates, while at higher temperatures, FeOH(+)/FeOD(+) + CH3/CD3 becomes the majority channel. The data were found to connect well with previous experiments at higher translational energies. The kinetics were simulated using a statistical adiabatic channel model (vibrations are adiabatic during approach of the reactants), which reproduced the experimental data of both reactions well over the extended temperature and energy ranges. Stationary point energies along the reaction pathway determined by ab initio calculations seemed to be only approximate and were allowed to vary in the statistical model. The model shows a crossing from the ground-state sextet surface to the excited quartet surface with large efficiency, indicating that both states are involved. The reaction bottleneck for the reaction is found to be the quartet barrier, for CH4 modeled as -22 kJ mol(-1) relative to the sextet reactants. Contrary to previous rationalizations, neither less favorable spin-crossing at increased energies nor the opening of additional reaction channels is needed to explain the temperature dependence of the product branching fractions. It is found that a proper treatment of state-specific rotations is crucial. The modeled energy for the FeOH(+) + CH3 channel (-1 kJ mol(-1)) agrees with the experimental thermochemical value, while the modeled energy of the Fe(+) + CH3OH channel (-10 kJ mol(-1)) corresponds to the quartet iron product, provided that spin-switching near the products is inefficient. Alternative possibilities for spin switching during the reaction are considered. The modeling provides unique insight into the reaction mechanisms as well as energetic benchmarks for the reaction surface.


Assuntos
Compostos Férricos/química , Metano/química , Modelos Estatísticos , Temperatura , Cinética , Metanol/síntese química , Metanol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...