Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 157(17): 174309, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347703

RESUMO

Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations. The ionization spectrum was computed using the multi-configuration time-dependent Hartree method. The calculated spectrum is in good agreement with the experimental data, allowing for some interpretation of the observed features to be proposed.

2.
J Chem Phys ; 155(5): 054304, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364329

RESUMO

Linearly polarized synchrotron radiation has been used to record polarization dependent valence shell photoelectron spectra of imidazole in the photon energy range 21-100 eV. These have allowed the photoelectron angular distributions, as characterized by the anisotropy parameter ß, and the electronic state intensity branching ratios to be determined. Complementing these experimental data, theoretical photoionization partial cross sections and ß-parameters have been calculated for the outer valence shell orbitals. The assignment of the structure appearing in the experimental photoelectron spectra has been guided by vertical ionization energies and spectral intensities calculated by various theoretical methods that incorporate electron correlation and orbital relaxation. Strong orbital relaxation effects have been found for the 15a', nitrogen lone-pair orbital. The calculations also predict that configuration mixing leads to the formation of several low-lying satellite states. The vibrational structure associated with ionization out of a particular orbital has been simulated within the Franck-Condon model using harmonic vibrational modes. The adiabatic approximation appears to be valid for the X 2A″ state, with the ß-parameter for this state being independent of the level of vibrational excitation. However, for all the other outer valence ionic states, a disparity occurs between the observed and the simulated vibrational structure, and the measured ß-parameters are at variance with the behavior expected at the level of the Franck-Condon approximation. These inconsistencies suggest that the excited electronic states may be interacting vibronically such that the nuclear dynamics occur over coupled potential energy surfaces.

3.
J Chem Phys ; 154(9): 094303, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685139

RESUMO

Valence photoelectron spectra and photoelectron angular distributions of trans-dichloroethene have been measured with vibrational resolution at photon energies between 19 eV and 90 eV. Calculations of photoelectron anisotropy parameters, ß, and harmonic vibrational modes help provide initial insight into the molecular structure. The photon energy range encompasses the expected position of the atomic Cl 3p Cooper minimum. A corresponding dip observed here in the anisotropy of certain photoelectron bands permits the identification and characterization of those molecular orbitals that retain a localized atomic Cl character. The adiabatic approximation holds for the X2Au state photoelectron band, but vibronic coupling was inferred within the A-B-C and the D-E states by noting various failures of the Franck-Condon model, including vibrationally dependent ß-parameters. This is further explored using the linear vibronic coupling model with interaction parameters obtained from ab initio calculations. The A/B photoelectron band is appreciably affected by vibronic coupling, owing to the low-lying conical intersection of the A2Ag and B2Bu states. The C2Bg band is also affected, but to a lesser extent. The adiabatic minima of the D2Au and E2Ag states are almost degenerate, and the vibronic interaction between these states is considerable. The potential energy surface of the D2Au state is predicted to have a double-minimum shape with respect to the au deformations of the molecular structure. The irregular vibrational structure of the resulting single photoelectron band reflects the non-adiabatic nuclear dynamics occurring on the two coupled potential energy surfaces above the energy of their conical intersection.

4.
J Chem Phys ; 153(16): 164307, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138405

RESUMO

Vibronic interactions in the pyridine radical cation ground state, 2A1, and its lowest excited states, 2A2 and 2B1, are studied theoretically. These states originate from the ionization out of the highest occupied orbitals of pyridine, 7a1 (nσ), 1a2 (π), and 2b1 (π), respectively, and give rise to the lowest two photoelectron maxima. According to our previous high-level ab initio calculations [Trofimov et al., J. Chem. Phys. 146, 244307 (2017)], the 2A2 (π-1) excited state is very close in energy to the 2A1 (nσ-1) ground state, which suggests that these states could be vibronically coupled. Our present calculations confirm that this is indeed the case. Moreover, the next higher excited state, 2B1 (π-1), is also involved in the vibronic interaction with the 2A1 (nσ-1) and 2A2 (π-1) states. The three-state vibronic coupling problem was treated within the framework of a linear vibronic coupling model employing parameters derived from the ionization energies of pyridine computed using the linear response coupled-cluster method accounting for single, double, and triple excitations (CC3). The potential energy surfaces of the 2A1 and 2A2 states intersect in the vicinity of the adiabatic minimum of the 2A2 state, while the surfaces of the 2A2 and 2B1 states intersect near the 2B1 state minimum. The spectrum computed using the multi-configuration time-dependent Hartree (MCTDH) method accounting for 24 normal modes is in good qualitative agreement with the experimental spectrum of pyridine obtained using high-resolution He I photoelectron spectroscopy and allows for some assignment of the observed features.

5.
J Chem Phys ; 150(22): 224303, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202236

RESUMO

The C 1s ionization spectrum of CH3I has been studied both experimentally and theoretically. Synchrotron radiation has been employed to record polarization dependent photoelectron spectra at a photon energy of 614 eV. These spectra encompass the main-line due to the C 1s single-hole state and the peaks associated with the shake-up satellites. Vertical ionization energies and relative photoelectron intensities have been computed using the fourth-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the 6-311++G** basis set. The theoretical spectrum derived from these calculations agrees qualitatively with the experimental results, thereby allowing the principal spectral features to be assigned. According to our calculations, two 2A1 shake-up states of the C 1s-1 σCI → σCI * type with singlet and triplet intermediate coupling of the electron spins (S' = 0, 1) play an important role in the spectrum and contribute significantly to the overall intensity. Both of these states are expected to have dissociative diabatic potential energy surfaces with respect to the C-I separation. Whereas the upper of these states perturbs the manifold of Rydberg states, the lower state forms a band which is characterized by a strongly increased width. Our results indicate that the lowest shake-up peak with significant spectral intensity is due to the pair (S' = 0, 1) of 2E (C 1s-1 I 5p → σCI *) states. We predict that these 2E states acquire photoelectron intensity due to spin-orbit interaction. Such interactions play an important role here due to the involvement of the I 5p orbitals.

6.
J Chem Phys ; 149(7): 074305, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134690

RESUMO

The influence of vibronic coupling on the outer valence ionic states of cis-dichloroethene has been investigated by recording photoelectron spectra over the excitation range 19-90 eV using plane polarized synchrotron radiation, for two polarization orientations. The photoelectron anisotropy parameters and electronic state branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that the photoionization dynamics of the Ã2B2, B̃2A1, C̃2A2, and D̃2B1 states, all of which are formed through the ejection of an electron from a nominally chlorine lone-pair orbital, exhibit distinct evidence of the Cooper minimum associated with the halogen atom. While retaining a high degree of atomic character, these orbital ionizations nevertheless display clear distinctions. Simulations, assuming the validity of the Born-Oppenheimer and the Franck-Condon approximations, of the X̃2B1, Ã2B2, and D̃2B1 state photoelectron bands have allowed some of the vibrational structure observed in the experimental spectra to be assigned. The simulations provide a very satisfactory interpretation for the X̃2B1 state band but appear less successful for the Ã2B2 and D̃2B1 states, with irregularities appearing in both. The B̃2A1 and C̃2A2 state photoelectron bands exhibit very diffuse and erratic profiles that cannot be reproduced at this level. Photoelectron anisotropy parameters, ß, have been evaluated as a function of binding energy across the studied photon energy range. There is a clear step change in the ß values of the Ã2B2 band at the onset of the perturbed peak intensities, with ß evidently adopting the value of the B̃2A1 band ß. The D̃2B1 band ß values also display an unexpected vibrational level dependence, contradicting Franck-Condon expectations. These various behaviors are inferred to be a consequence of vibronic coupling in this system.


Assuntos
Dicloroetilenos/química , Dicloroetilenos/efeitos da radiação , Simulação por Computador , Elétrons , Modelos Químicos , Modelos Moleculares , Espectroscopia Fotoeletrônica , Fótons , Estereoisomerismo , Vibração
7.
J Chem Phys ; 149(7): 074306, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134699

RESUMO

The valence shell photoelectron spectrum of cis-dichloroethene has been studied both experimentally and theoretically. Photoelectron spectra have been recorded with horizontally and vertically plane polarized synchrotron radiation, thereby allowing the anisotropy parameters, characterizing the angular distributions, to be determined. The third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function has been employed to compute the complete valence shell ionization spectrum. In addition, the vertical ionization energies have been calculated using the outer valence Green's function (OVGF) method and the equation-of-motion coupled-cluster, with single and double substitutions for calculating ionization potentials (EOM-IP-CCSD) model. The theoretical results have enabled assignments to be proposed for most of the structure observed in the experimental spectra, including the inner-valence regions dominated by satellite states. The linear vibronic coupling model has been employed to study the vibrational structure of the lowest photoelectron bands, using parameters obtained from ab initio calculations. The ground state optimized geometries and vibrational frequencies have been computed at the level of the second-order Møller-Plesset perturbation theory, and the dependence of the ionization energies on the nuclear configuration has been evaluated using the OVGF method. While the adiabatic approximation holds for the X̃2B1 state photoelectron band, the Ã2B2, B̃2A1, and C̃2A2 states interact vibronically and form a complex photoelectron band system with four distinct maxima. The D̃2B1 and Ẽ2B2 states also interact vibronically with each other. The potential energy surface of the D̃2B1 state is predicted to have a double-minimum shape with respect to the out-of-plane a2 deformations of the molecular structure. The single photoelectron band resulting from this interaction is characterized by a highly irregular structure, reflecting the non-adiabatic nuclear dynamics occurring on the two coupled potential energy surfaces forming a conical intersection close to the minimum of the Ẽ2B2 state.


Assuntos
Dicloroetilenos/química , Dicloroetilenos/efeitos da radiação , Simulação por Computador , Elétrons , Modelos Químicos , Modelos Moleculares , Espectroscopia Fotoeletrônica , Fótons , Distribuição de Poisson , Estereoisomerismo , Vibração
8.
J Chem Phys ; 147(16): 164307, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096444

RESUMO

The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region.

9.
J Chem Phys ; 146(24): 244307, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668050

RESUMO

The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2A2(1a2-1), 2A1(7a1-1), 2B1(2b1-1), and 2B2(5b2-1), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)-1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.

10.
J Chem Phys ; 143(14): 144103, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472359

RESUMO

The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

11.
J Chem Phys ; 143(14): 144304, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472376

RESUMO

Angle resolved photoelectron spectra of the X̃(2)B1, Ã(2)A2, B̃(2)B2, and C̃(2)B1 states of bromobenzene have been recorded over the excitation range 20.5-94 eV using linearly polarized synchrotron radiation. The photoelectron anisotropy parameters and electronic branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that ionization from the 8b2 orbital and, to a lesser extent, the 4b1 orbital is influenced by the Cooper minimum associated with the bromine atom. The 8b2 and 4b1 orbitals are nominally bromine lone-pairs, but the latter orbital interacts strongly with the π-orbitals in the benzene ring and this leads to a reduced atomic character. Simulations of the X̃(2)B1, B̃(2)B2, and C̃(2)B1 state photoelectron bands have enabled most of the vibrational structures appearing in the experimental spectra to be assigned. Many of the photoelectron peaks exhibit an asymmetric shape with a tail towards low binding energy. This asymmetry has been examined in the simulations of the vibrationally unexcited peak, due mainly to the adiabatic transition, in the X̃(2)B1 state photoelectron band. The simulations show that the asymmetric profile arises from hot-band transitions. The inclusion of transitions originating from thermally populated levels results in a satisfactory agreement between the experimental and simulated peak shapes.

12.
Phys Chem Chem Phys ; 16(39): 21629-44, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25196806

RESUMO

The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

13.
J Chem Phys ; 137(4): 044119, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22852609

RESUMO

A new polarization propagator approach to indirect nuclear spin-spin coupling constantans is formulated within the framework of the algebraic-diagrammatic construction (ADC) approximation and implemented at the level of the strict second-order approximation scheme, ADC(2). The ADC approach possesses transparent computational procedure operating with Hermitian matrix quantities defined with respect to physical excitations. It is size-consistent and easily extendable to higher orders via the hierarchy of available ADC approximation schemes. The ADC(2) method is tested in the first applications to HF, N(2), CO, H(2)O, HCN, NH(3), CH(4), C(2)H(2), PH(3), SiH(4), CH(3)F, and C(2)H(4). The calculated indirect nuclear spin-spin coupling constants are in good agreement with the experimental data and results of the second-order polarization propagator approximation method. The computational effort of the ADC(2) scheme scales as n(5) with respect to the number of molecular orbitals n, which makes this method promising for applications to larger molecules.

14.
J Chem Phys ; 136(6): 064107, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360169

RESUMO

An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

15.
J Chem Phys ; 133(16): 164309, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21033790

RESUMO

The potential energy surfaces (PESs) of the two lowest excited singlet states of furan [correlating with the Rydberg (1)A(2)(3s) and valence (1)B(2)(V) states at the C(2v) ground-state molecular configuration] have been studied in some detail with regard to the photoinduced ring-opening reaction. The surfaces have been characterized in terms of their stationary points and points of minimum energy conical intersections along the ring-opening pathway. The optimization of the geometrical parameters has been performed with the equation of motion coupled cluster singles and doubles method. The ab initio PESs have been modeled by energy grids and Taylor series. The resulting 11-dimensional PESs reproduce the ab initio results to a good accuracy and can be used in dynamical calculations.

16.
J Chem Phys ; 123(14): 144115, 2005 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-16238382

RESUMO

An earlier proposed propagator method for the treatment of molecular ionization is tested in first applications. The method referred to as the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator represents a computationally promising alternative to the existing Dyson ADC(3) method. The advantage of the nD-ADC(3) scheme is that the (N+/-1)-electronic parts of the one-particle Green's function are decoupled from each other and the corresponding equations can be solved separately. For a test of the method the nD-ADC(3) results for the vertical ionization transitions in C(2)H(4), CO, CS, F(2), H(2)CO, H(2)O, HF, N(2), and Ne are compared with available experimental and theoretical data including results of full configuration interaction (FCI) and coupled cluster computations. The mean error of the nD-ADC(3) ionization energies relative to the experimental and FCI results is about 0.2 eV. The nD-ADC(3) method, scaling as n(5) with the number of orbitals, requires the solution of a relatively simple Hermitian eigenvalue problem. The method renders access to ground-state properties such as dipole moments. Moreover, also one-electron properties of (N+/-1) electron states can now be studied as a consequence of a specific intermediate-state representation (ISR) formulation of the nD-ADC approach. Corresponding second-order ISR equations are presented.

17.
J Am Chem Soc ; 127(3): 986-95, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15656637

RESUMO

Silicon-nitrogen bonding and the photoelectron spectra of hydro-silatrane and methyl-silatrane, XSi[OCH2CH2]3N (X = H and Me), were studied with ab initio electron propagator theory, many-body methods, and density functional models. A linear vibronic coupling (LVC) model was employed to estimate vibrational widths of the ionization bands and to study the dependence of the ionization energies on the molecular geometry. Particular attention was given to coordinates that change the Si-N distance and the strength of the donor-acceptor interaction between these two atoms. The ionization energy of the highest occupied molecular orbital has a very strong geometrical dependence which leads to an unusually large vibrational width in the corresponding photoelectron band. The assignment of this band in methyl-silatrane, which was controversial for a long time, is resolved by the present study. The calculated photoelectron spectra allow for clear assignment of at least three more bands in the observed spectra. The present results demonstrate the important role of electrostatic interactions in Si <-- N bonding and in the outer-valence ionization energies of the silatranes.

18.
J Chem Phys ; 121(10): 4585-98, 2004 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-15332889

RESUMO

The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.

19.
J Chem Phys ; 120(24): 11449-64, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268179

RESUMO

Propagator methods provide a direct approach to energies and transition moments for (generalized) electronic excitations from the ground state, but they do not usually allow one to determine excited state wave functions and properties. Using a specific intermediate state representation (ISR) concept, we here show how this restriction can be overcome in the case of the algebraic-diagrammatic construction (ADC) propagator approach. In the ISR reformulation of the theory the basic ADC secular matrix is written as a representation of the Hamiltonian (or the shifted Hamiltonian) in terms of explicitly constructable states, referred to as intermediate (or ADC) states. Similar intermediate state representations can be derived for operators other than the Hamiltonian. Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of the excited wave functions and allow one to calculate physical properties of excited states as well as transition moments for transitions between different excited states. As for the ground-state excitation energies and transition moments, the ADC excited state properties are size consistent so that the theory is suitable for applications to large systems. The established hierarchy of higher-order [ADC(n)] approximations, corresponding to systematic truncations of the IS configuration space and the perturbation-theoretical expansions of the ISR matrix elements, can readily be extended to the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have been derived and coded at the second-order [ADC(2)] level of theory. As a first computational test of the method we have carried out ADC(2) calculations for singlet and triplet excited state dipole moments in H(2)O and HF, where comparison to full CI results can be made. The potential of the ADC(2) method is further demonstrated in an exploratory study of the excitation energies and dipole moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1-T4, and two singlet states, S1 and S2, lie (vertically) below the prominent charge transfer (CT) excitation, S3. The dipole moment of the S3 state (17.0D) is distinctly larger than that of the corresponding T3 triplet state (11.7D).

20.
J Chem Phys ; 120(9): 4098-106, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268576

RESUMO

The one-particle Green's function theory in its various implementations is a well-established many-body approach for the calculation of electron ionization and attachment energies in atoms and molecules. In order to describe not only scalar-relativistic effects but also spin-orbit splitting on an equal footing an embedding of this theory in the four-component framework was carried out and fully relativistic ionization energies of the noble gas atoms Ne through Xe were calculated using the second-order algebraic diagrammatic construction [ADC2] approximation scheme. Comparison with nonrelativistic ADC2 results and experimental data was made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...