Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239626

RESUMO

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

2.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849760

RESUMO

Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human GBM patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to GBM and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


Assuntos
Proteínas de Drosophila , Glioblastoma , Animais , Adesão Celular/genética , Movimento Celular/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Glioblastoma/metabolismo , Humanos , Interferência de RNA
3.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572751

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mitochondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most frequent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was significantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM.

4.
J Clin Invest ; 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255747

RESUMO

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.

5.
Compr Physiol ; 7(3): 819-840, 2017 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-28640444

RESUMO

Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.


Assuntos
Tecido Adiposo/metabolismo , Hormônio do Crescimento/metabolismo , Tecido Adiposo/patologia , Animais , Hormônio do Crescimento/genética , Humanos , Obesidade/metabolismo , Obesidade/patologia , Doenças da Hipófise/metabolismo , Doenças da Hipófise/patologia , Transdução de Sinais
6.
J Gerontol A Biol Sci Med Sci ; 69(1): 34-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23873966

RESUMO

Growth hormone receptor-null (GHR(-/-)) mice are dwarf, insulin sensitive, and long-lived in spite of increased adiposity. However, their adiposity is not uniform, with select white adipose tissue (WAT) depots enlarged. To study WAT depot-specific effects on insulin sensitivity and life span, we analyzed individual WAT depots of 12- and 24-month-old GHR(-) (/-) and wild-type (WT) mice, as well as their plasma levels of selected hormones. Adipocyte sizes and plasma insulin, leptin, and adiponectin levels decreased with age in both GHR(-) (/-) and WT mice. Two-dimensional gel electrophoresis proteomes of WAT depots were similar among groups, but several proteins involved in endocytosis and/or cytoskeletal organization (Ehd2, S100A10, actin), anticoagulation (S100A10, annexin A5), and age-related conditions (alpha2-macroglobulin, apolipoprotein A-I, transthyretin) showed significant differences between genotypes. Because Ehd2 may regulate endocytosis of Glut4, we measured Glut4 levels in the WAT depots of GHR(-) (/-) and WT mice. Inguinal WAT of 12-month-old GHR(-) (/-) mice displayed lower levels of Glut4 than WT. Overall, the protein changes detected in this study offer new insights into possible mechanisms contributing to enhanced insulin sensitivity and extended life span in GHR(-) (/-) mice.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/fisiologia , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Resistência à Insulina , Receptores da Somatotropina/genética , Adipócitos/citologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Receptores da Somatotropina/metabolismo
7.
Age (Dordr) ; 34(5): 1225-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21953241

RESUMO

Unintentional weight loss (wasting) in the elderly is a major health concern as it leads to increased mortality. Several studies have focused on muscle loss, but little is known about the mechanisms giving rise to loss of fat mass at old ages. To investigate potential mechanisms, white adipose tissue (WAT) characteristics and proteomic profiles were compared between adult (10-12-month-old) and aged (22-24-month-old) wild-type mice. Four individual WAT depots were analyzed to account for possible depot-specific differences. Proteomic profiles of WAT depots, along with body weights and compositions, plasma levels of insulin, leptin and adiponectin, insulin tolerance, adipocyte sizes, and products of oxidative damage in each WAT depot were determined. We found that lean mass remained constant while fat mass and insulin tolerance were decreased in old age, as were adipocyte sizes in the WAT depots. Proteomic results showed increased levels of enolase, pyruvate dehydrogenase E1ß, NAD(+)-dependent isocitrate dehydrogenase α, and ATP synthase subunit ß, and decreased levels of carbonic anhydrase 3 in WAT of aged mice. These data suggest increased aerobic glucose oxidation in wasting WAT, consistent with decreased insulin signaling. Also, Cu/Zn superoxide dismutase and two chaperones were increased in aged WAT depots, indicating higher stress resistance. In agreement, lipid peroxidation (HNE-His adducts) increased in old age, although protein oxidation (carbonyl groups) showed no increase. In conclusion, features of wasting WAT were similar in the four depots, including decreased adipocyte sizes and alterations in protein expression profiles that indicated decreased insulin sensitivity and increased lipid peroxidation.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...