Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0189523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319052

RESUMO

Clostridioides difficile infections have become a major challenge in medical facilities. The bacterium is capable of spore formation allowing the survival of antibiotic treatment. Therefore, research on the physiology of C. difficile is important for the development of alternative treatment strategies. In this study, we investigated eight putative flavodoxins of C. difficile 630. Flavodoxins are small electron transfer proteins of specifically low potential. The unusually high number of flavodoxins in C. difficile suggests that they are expressed under different conditions. We determined high transcription levels for several flavodoxins during the exponential growth phase, especially for floX. Since flavodoxins are capable of replacing ferredoxins under iron deficiency conditions in other bacteria, we also examined their expression in C. difficile under low iron and no iron levels. In particular, the amount of fldX increased with decreasing iron concentration and thus could possibly replace ferredoxins. Moreover, we demonstrated that fldX is increasingly expressed under different oxidative stress conditions and thus may play an important role in the oxidative stress response. While increased fldX expression was detectable at both RNA and protein level, CD2825 showed increased expression only at mRNA level under H2O2 stress with sufficient iron availability and may indicate hydroxyl radical-dependent transcription. Although the exact function of the individual flavodoxins in C. difficile needs to be further investigated, the present study shows that flavodoxins could play an important role in several physiological processes and under infection-relevant conditions. IMPORTANCE: The gram-positive, anaerobic, and spore-forming bacterium Clostridioides difficile has become a vast problem in human health care facilities. The antibiotic-associated infection with this intestinal pathogen causes serious and recurrent inflammation of the intestinal epithelium, in many cases with a severe course. To come up with novel targeted therapies against C. difficile infections, a more detailed knowledge on the pathogen's physiology is mandatory. Eight putative flavodoxins, an extraordinarily high copy number of this type of small electron transfer proteins, are annotated for C. difficile. Flavodoxins are known to be essential electron carriers in other bacteria, for instance, during infection-relevant conditions such as iron limitation and oxidative stress. This work is a first and comprehensive overview on characteristics and expression profiles of the putative flavodoxins in the pathogen C. difficile.


Assuntos
Clostridioides difficile , Flavodoxina , Humanos , Flavodoxina/metabolismo , Clostridioides difficile/genética , Clostridioides , Ferredoxinas , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ferro/metabolismo
2.
Front Microbiol ; 13: 814692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401433

RESUMO

The anaerobic bacterium Clostridioides difficile represents one of the most problematic pathogens, especially in hospitals. Dysbiosis has been proven to largely reduce colonization resistance against this intestinal pathogen. The beneficial effect of the microbiota is closely associated with the metabolic activity of intestinal microbes such as the ability to transform primary bile acids into secondary ones. However, the basis and the molecular action of bile acids (BAs) on the pathogen are not well understood. We stressed the pathogen with the four most abundant human bile acids: cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA). Thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM), and electron microscopy (EM) were employed to track the enrichment and destination of bile acids in the bacterial cell. TLC not only revealed a strong accumulation of LCA in C. difficile, but also indicated changes in the composition of membrane lipids in BA-treated cells. Furthermore, morphological changes induced by BAs were determined, most pronounced in the virtually complete loss of flagella in LCA-stressed cells and a flagella reduction after DCA and CDCA challenge. Quantification of both, protein and RNA of the main flagella component FliC proved the decrease in flagella to originate from a change in gene expression on transcriptional level. Notably, the loss of flagella provoked by LCA did not reduce adhesion ability of C. difficile to Caco-2 cells. Most remarkably, extracellular toxin A levels in the presence of BAs showed a similar pattern as flagella expression. That is, CA did not affect toxin expression, whereas lower secretion of toxin A was determined in cells stressed with LCA, DCA or CDCA. In summary, the various BAs were shown to differentially modify virulence determinants, such as flagella expression, host cell adhesion and toxin synthesis. Our results indicate differences of BAs in cellular localization and impact on membrane composition, which could be a reason of their diverse effects. This study is a starting point in the elucidation of the molecular mechanisms underlying the differences in BA action, which in turn can be vital regarding the outcome of a C. difficile infection.

3.
mSphere ; 6(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658275

RESUMO

The human pathogen Clostridioides difficile has evolved into the leading cause of nosocomial diarrhea. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Although C. difficile features an anaerobic lifestyle, we determined a remarkably high oxygen tolerance of the laboratory reference strain 630Δerm A mutation of a single nucleotide (single nucleotide polymorphism [SNP]) in the DNA sequence (A to G) of the gene encoding the regulatory protein PerR results in an amino acid substitution (Thr to Ala) in one of the helices of the helix-turn-helix DNA binding domain of this transcriptional repressor in C. difficile 630Δerm PerR is a sensor protein for hydrogen peroxide and controls the expression of genes involved in the oxidative stress response. We show that PerR of C. difficile 630Δerm has lost its ability to bind the promoter region of PerR-controlled genes. This results in a constitutive derepression of genes encoding oxidative stress proteins such as a rubrerythrin (rbr1) whose mRNA abundance under anaerobic conditions was increased by a factor of about 7 compared to its parental strain C. difficile 630. Rubrerythrin repression in strain 630Δerm could be restored by the introduction of PerR from strain 630. The permanent oxidative stress response of C. difficile 630Δerm observed here should be considered in physiological and pathophysiological investigations based on this widely used model strain.IMPORTANCE The intestinal pathogen Clostridioides difficile is one of the major challenges in medical facilities nowadays. In order to better combat the bacterium, detailed knowledge of its physiology is mandatory. C. difficile strain 630Δerm was generated in a laboratory from the patient-isolated strain C. difficile 630 and represents a reference strain for many researchers in the field, serving as the basis for the construction of insertional gene knockout mutants. In our work, we demonstrate that this strain is characterized by an uncontrolled oxidative stress response as a result of a single-base-pair substitution in the sequence of a transcriptional regulator. C. difficile researchers working with model strain 630Δerm should be aware of this permanent stress response.


Assuntos
Clostridioides difficile/genética , Estresse Oxidativo/genética , Mutação Puntual , Proteínas Repressoras/genética , Fatores de Transcrição/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Virulência/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31367343

RESUMO

Background: Recent publications have raised concerns of reduced susceptibilities of clinical bacterial isolates towards biocides. This study presents a comparative investigation of the susceptibility of livestock-associated Methicillin-resistant Staphylococcus aureus (LA-MRSA), hospital-acquired MRSA (HA-MRSA) and community-aquired MRSA (CA-MRSA) to the commonly used antiseptics chlorhexidine (CHX), octenidine (OCT), polyhexanide (PHMB), PVP-iodine (PVP-I) and triclosan (TCX) based on internationally accepted standards. Methods: In total, 28 (18 LA-, 5 HA- and 5 CA) genetically characterized MRSA strains representing a broad spectrum of hosts, clonal complexes and spa-types, as well as the reference methicillin-sensitive Staphylococcus aureus (MSSA) strain ATCC 6538, were selected. Minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MBC) were determined in accordance with DIN 58940-7, 58940-8 and DIN EN ISO 20776-1. The microbicidal efficacy was determined in accordance with DIN EN 1040. Results: Results from the MIC/MBC and quantitative suspension tests revealed differences between antiseptic substances but not between epidemiological groups of MRSA strains. OCT and PHMB were the most active substances with a minimal MIC of 1 mg/L, followed by CHX (2 mg/L), TCX (32 mg/L) and finally PVP-I (1024 mg/L). The MSSA reference strain showed a tendency to a higher susceptibility compared to the MRSA strains. Conclusions: This investigation of the susceptibility of a range of LA-, HA- and CA-MRSA strains using standardized conditions gave no indication that LA-MRSA strains are less susceptible to commonly used antiseptics compared to HA- and CA-MRSA strains.


Assuntos
Anti-Infecciosos Locais/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Animais , Biguanidas/farmacologia , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Humanos , Iminas , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana/normas , Viabilidade Microbiana/efeitos dos fármacos , Povidona-Iodo/farmacologia , Piridinas/farmacologia , Triclosan/farmacologia
6.
Front Microbiol ; 10: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833939

RESUMO

Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.

7.
Anaerobe ; 53: 94-107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29859941

RESUMO

Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Perfilação da Expressão Gênica , Estresse Oxidativo , Oxigênio/toxicidade , Aerobiose , Anaerobiose , Clostridioides difficile/crescimento & desenvolvimento , Genômica , Redes e Vias Metabólicas/genética , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...