Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 297(5578): 81-5, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-12040090

RESUMO

Using the Gamma-Ray Spectrometer on the Mars Odyssey, we have identified two regions near the poles that are enriched in hydrogen. The data indicate the presence of a subsurface layer enriched in hydrogen overlain by a hydrogen-poor layer. The thickness of the upper layer decreases with decreasing distance to the pole, ranging from a column density of about 150 grams per square centimeter at -42 degrees latitude to about 40 grams per square centimeter at -77 degrees. The hydrogen-rich regions correlate with regions of predicted ice stability. We suggest that the host of the hydrogen in the subsurface layer is ice, which constitutes 35 +/- 15% of the layer by weight.


Assuntos
Hidrogênio , Gelo , Marte , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Raios gama , Modelos Teóricos , Nêutrons , Astronave , Espectrometria gama , Análise Espectral , Água
2.
Acta Astronaut ; 40(9): 663-74, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-11540784

RESUMO

The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.


Assuntos
Meio Ambiente Extraterreno , Gelo/análise , Meteoroides , Voo Espacial/instrumentação , Astronave/instrumentação , Amônia , Astronomia/instrumentação , Varredura Diferencial de Calorimetria , Isótopos de Carbono , Desenho de Equipamento , Evolução Química , Cromatografia Gasosa-Espectrometria de Massas , Metano , Isótopos de Oxigênio , Espectrometria gama , Água
3.
Appl Opt ; 23(14): 2239, 1984 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18212983
4.
5.
Appl Opt ; 19(17): 2952-6, 1980 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20234534

RESUMO

A simple device is described that is capable of providing real-time 3-D viewing of extended x-ray and gamma-ray objects. The visible-light images produced by the device are not merely stereoscopic, i.e., one perspective, but possess both horizontal and vertical parallax with a reasonably large field of view.

6.
Science ; 179(4075): 800-3, 1973 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17806299

RESUMO

Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

7.
Nature ; 226(5248): 827-8, 1970 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-16057537

RESUMO

Changes in the slope of a measured distribution may be explained partially by the effect of the measurement process itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA