Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 198(6): 545-552, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240754

RESUMO

Radiation therapy plays an important role in cancer treatment, as it is an established method used as part of the treatment plan for the majority of cancer patients. Real-time monitoring of the effects of radiation on the tumor microenvironment can contribute to the development of better treatment plans. In this study, we use diffuse reflectance spectroscopy, a non-invasive optical fiber-based technique, to determine the effects of different doses of radiation on the tumor microenvironment, as well as to determine the sensitivity of diffuse reflectance spectroscopy to low doses of radiation that are used in the treatment of certain cancers. We injected 4T1 cells into 50 Balb/c mice to generate tumor xenografts. When the tumors grew to 200 mm3, we distributed the mice into a control group or one of three radiation groups: 1, 2, or 4 Gy/fraction, and they underwent treatment for five consecutive days. We measured the tumor volume and collected diffuse reflectance spectra every day, with optical measurements being acquired both before and one h postirradiation on the five days of treatment. Based on the diffusely reflected light, we quantified vascular oxygenation, total hemoglobin content, and tissue scattering within these tumors. There was a significant increase in tumor vascular oxygenation, which was primarily due to an increase in oxygenated hemoglobin, in response to a 1 Gy/fraction of radiation, while there was a decrease in tissue scattering in response to all doses of radiation. Immunohistochemical analysis revealed that tumor cell proliferation and apoptosis were higher in irradiated groups compared to the control group. Our findings show that diffuse reflectance spectroscopy is sensitive to microenvironmental changes in tumors treated with doses of radiation as low as 1 Gy/fraction.


Assuntos
Microambiente Tumoral , Animais , Humanos , Camundongos , Hemoglobinas , Análise Espectral
2.
Theranostics ; 12(12): 5351-5363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910801

RESUMO

The accurate analytical characterization of metastatic phenotype at primary tumor diagnosis and its evolution with time are critical for controlling metastatic progression of cancer. Here, we report a label-free optical strategy using Raman spectroscopy and machine learning to identify distinct metastatic phenotypes observed in tumors formed by isogenic murine breast cancer cell lines of progressively increasing metastatic propensities. Methods: We employed the 4T1 isogenic panel of murine breast cancer cells to grow tumors of varying metastatic potential and acquired label-free spectra using a fiber probe-based portable Raman spectroscopy system. We used MCR-ALS and random forests classifiers to identify putative spectral markers and predict metastatic phenotype of tumors based on their optical spectra. We also used tumors derived from 4T1 cells silenced for the expression of TWIST, FOXC2 and CXCR3 genes to assess their metastatic phenotype based on their Raman spectra. Results: The MCR-ALS spectral decomposition showed consistent differences in the contribution of components that resembled collagen and lipids between the non-metastatic 67NR tumors and the metastatic tumors formed by FARN, 4T07, and 4T1 cells. Our Raman spectra-based random forest analysis provided evidence that machine learning models built on spectral data can allow the accurate identification of metastatic phenotype of independent test tumors. By silencing genes critical for metastasis in highly metastatic cell lines, we showed that the random forest classifiers provided predictions consistent with the observed phenotypic switch of the resultant tumors towards lower metastatic potential. Furthermore, the spectral assessment of lipid and collagen content of these tumors was consistent with the observed phenotypic switch. Conclusion: Overall, our findings indicate that Raman spectroscopy may offer a novel strategy to evaluate metastatic risk during primary tumor biopsies in clinical patients.


Assuntos
Segunda Neoplasia Primária , Análise Espectral Raman , Animais , Linhagem Celular Tumoral , Melanoma , Camundongos , Metástase Neoplásica , Fenótipo , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
3.
Biomed Opt Express ; 12(7): 3982-3991, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457393

RESUMO

Immune checkpoint inhibitors have revolutionized cancer treatment. However, there are currently no methods for noninvasively and nondestructively evaluating tumor response to immune checkpoint inhibitors. We used diffuse reflectance spectroscopy to monitor in vivo tumor microenvironmental changes in response to immune checkpoint inhibitors in a CT26 murine colorectal cancer model. Mice growing CT26 tumor xenografts were treated with either anti-PD-L1, anti-CTLA-4, a combination of both inhibitors, or isotype control on 3 separate days. Monotherapy with either anti-PD-L1 or anti-CTLA-4 led to a large increase in tumor vascular oxygenation within the first 6 days. Reoxygenation in anti-CTLA-4-treated tumors was due to a combination of increased oxygenated hemoglobin and decreased deoxygenated hemoglobin, pointing to a possible change in tumor oxygen consumption following treatment. Within the anti-PD-L1-treated tumors, reoxygenation was primarily due to an increase in oxygenated hemoglobin with the minimal change in deoxygenated hemoglobin, indicative of a likely increase in tumor perfusion. The tumors in the combined treatment group did not show any significant changes in tumor oxygenation following therapy. These studies demonstrate the sensitivity of diffuse reflectance spectroscopy to tumor microenvironmental changes following immunotherapy and the potential of such non-invasive techniques to determine early tumor response to immune checkpoint inhibitors.

4.
Neoplasia ; 23(1): 49-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220616

RESUMO

Fractionated radiation therapy is believed to reoxygenate and subsequently radiosensitize surviving hypoxic cancer cells. Measuring tumor reoxygenation between radiation fractions could conceivably provide an early biomarker of treatment response. However, the relationship between tumor reoxygenation and local control is not well understood. We used noninvasive optical fiber-based diffuse reflectance spectroscopy to monitor radiation-induced changes in hemoglobin oxygen saturation (sO2) in tumor xenografts grown from two head and neck squamous cell carcinoma cell lines - UM-SCC-22B and UM-SCC-47. Tumors were treated with 4 doses of 2 Gy over 2 consecutive weeks and diffuse reflectance spectra were acquired every day during the 2-week period. There was a statistically significant increase in sO2 in the treatment-responsive UM-SCC-22B tumors immediately following radiation. This reoxygenation trend was due to an increase in oxygenated hemoglobin (HbO2) and disappeared over the next 48 h as sO2 returned to preradiation baseline values. Conversely, sO2 in the relatively radiation-resistant UM-SCC-47 tumors increased after every dose of radiation and was driven by a significant decrease in deoxygenated hemoglobin (dHb). Immunohistochemical analysis revealed significantly elevated expression of hypoxia-inducible factor (HIF-1) in the UM-SCC-47 tumors prior to radiation and up to 48 h postradiation compared with the UM-SCC-22B tumors. Our observation of a decrease in dHb, a corresponding increase in sO2, as well as greater HIF-1α expression only in UM-SCC-47 tumors strongly suggests that the reoxygenation within these tumors is due to a decrease in oxygen consumption in the cancer cells, which could potentially play a role in promoting radiation resistance.


Assuntos
Oxirredução/efeitos da radiação , Consumo de Oxigênio/efeitos da radiação , Oxigênio/análise , Oxigênio/metabolismo , Tolerância a Radiação , Radiação , Análise Espectral , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/radioterapia , Imagem Óptica , Radioterapia , Análise Espectral/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biomed Opt ; 23(6): 1-6, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29873205

RESUMO

Tumor hypoxia is a critical indicator of poor clinical outcome in patients with cancers of the breast, cervix, and oral cavity. The ability to noninvasively and reliably monitor tumor oxygenation both prior to and during therapy can aid in identifying poor treatment response earlier than is currently possible and lead to effective changes in treatment regimen. Diffuse reflectance spectroscopy (DRS) has been used in several studies to measure tissue scattering, total hemoglobin content (THb), and vascular oxygenation (sO2) in tissue. In this study, we validate in vivo DRS-based measurements of vascular oxygenation using immunohistochemical staining of tumor hypoxia using pimonidazole, an established hypoxia marker. Using tumor xenografts grown from two different head and neck cell lines-UM-SCC-22B and UM-SCC-47-we demonstrate statistically significant negative correlations between tumor hypoxic fraction (HF) and THb (r = - 0.45; p = 0.04) and sO2 (r = - 0.50; p = 0.02). In addition, we also found a statistically significant positive correlation between HF and mean reduced scattering coefficient (r = 0.60; p = 0.005). Our results demonstrate that DRS-based measures of sO2 can provide reliable indirect measurements of tumor hypoxia that can be of significant utility in preclinical and clinical studies.


Assuntos
Técnicas Biossensoriais/métodos , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Oxigênio/análise , Análise Espectral/métodos , Hipóxia Tumoral/fisiologia , Animais , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Hemoglobinas/metabolismo , Humanos , Camundongos , Camundongos Nus , Nitroimidazóis/metabolismo , Radiossensibilizantes/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...