Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(26)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33902016

RESUMO

When the skyrmion dynamics beyond the particle-like description is considered, this topological structure can deform due to a self-induced field. In this work, we perform Monte Carlo simulations to characterize the skyrmion deformation during its steady movement. In the low-velocity regime, the deformation in the skyrmion shape is quantified by an effective inertial mass, which is related to the dissipative force. When skyrmions move faster, the large self-induced deformation triggers topological transitions. These transitions are characterized by the proliferation of skyrmions and a different total topological charge, which is obtained as a function of the skyrmion velocity. Our findings provide an alternative way to describe the dynamics of a skyrmion that accounts for the deformations of its structure. Furthermore, such motion-induced topological phase transitions make it possible to control the number of ferromagnetic skyrmions through velocity effects.

2.
Phys Rev Lett ; 122(6): 067204, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822086

RESUMO

Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and band gaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions has been pursued with high interest since properties, such as the stabilization of chiral spin textures and nonreciprocal spin-wave propagation, emerge from this antisymmetric exchange coupling. In this context, to further engineer the magnon band structure, we propose the implementation of magnonic crystals with periodic Dzyaloshinskii-Moriya interactions, which can be obtained, for instance, via patterning of periodic arrays of heavy metal wires on top of an ultrathin magnetic film. We demonstrate through theoretical calculations and micromagnetic simulations that such systems show an unusual evolution of the standing spin waves around the gaps. We also predict the emergence of indirect gaps and flat bands, effects that depend on the strength of the Dzyaloshinskii-Moriya interaction. Such phenomena, which have been previously observed in different systems, are observed here simultaneously, opening new routes towards engineered metamaterials for spin-wave-based devices.

3.
Phys Rev Lett ; 118(14): 147201, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430498

RESUMO

We report the observation of a Pt layer thickness dependence on the induced interfacial Dzyaloshinskii-Moriya interaction in ultrathin Pt(d_{Pt})/CoFeB films. Taking advantage of the large spin-orbit coupling of the heavy metal, the interfacial Dzyaloshinskii-Moriya interaction is quantified by Brillouin light scattering measurements of the frequency nonreciprocity of spin waves in the ferromagnet. The magnitude of the induced Dzyaloshinskii-Moriya coupling is found to saturate to a value of 0.45 mJ/m^{2} for Pt thicknesses larger than ∼2 nm. The experimental results are explained by analytical calculations based on the three-site indirect exchange mechanism that predicts a Dzyaloshinskii-Moriya interaction at the interface between a ferromagnetic thin layer and a heavy metal. Our findings open up a way to control and optimize chiral effects in ferromagnetic thin films through the thickness of the heavy-metal layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...