Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Appl Opt ; 62(7): B231-B238, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132935

RESUMO

The 2022 Optical Interference Measurement Problem comprised the determination of the refractive index of a thin tantalum pentoxide film at a wavelength of 532 nm and the characterization of the UV band edge as an optional task.

2.
Appl Opt ; 62(2): 411-418, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630241

RESUMO

Because of its high sensitivity to even small objects and the quick measurement principle, angle-resolved scattering (ARS) measurements exhibit a promising potential as a rapid analysis tool for bacterial cells at small sample sizes and very low numbers of cells. In this study, investigations on scattered light from various bacterial cell samples revealed applicability down to single cell levels, which is a huge benefit compared to conventional methods that depend on time-consuming cellular growth over several hours or even days. With the proposed setup and data analysis method, it is possible to detect scatter differences among cell types, together with the cell concentration.


Assuntos
Luz , Espalhamento de Radiação , Carga Bacteriana
3.
Appl Opt ; 61(28): 8286-8301, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256141

RESUMO

Sub-aperture fabrication techniques such as diamond turning, ion beam figuring, and bonnet polishing are indispensable tools in today's optical fabrication chain. Each of these tools addresses different figure and roughness imperfections corresponding to a broad spatial frequency range. Their individual effects, however, cannot be regarded as completely independent from each other due to the concurrent formation of form and finish errors, particularly in the mid-spatial frequency (MSF) region. Deterministic Zernike polynomials and statistical power spectral density (PSD) functions are often used to represent form and finish errors, respectively. Typically, both types of surface errors are treated separately when their impact on optical performance is considered: (i) wave aberrations caused by figure errors and (ii) stray light resulting from surface roughness. To fill the gap between deterministic and statistical descriptions, a generalized surface description is of great importance for bringing versatility to the entire optical fabrication chain by enabling easy and quick exchange of surface topography data between three disciplines: optical design, manufacturing, and characterization. In this work, we present a surface description by stitching the amplitude and unwrapped phase spectra of several surface topography measurements at different magnifications. An alternative representation of surface errors at different regimes is proposed, allowing us to bridge the gap between figure and finish as well as to describe the well-known MSF errors.

4.
Opt Express ; 28(22): 32499-32516, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114934

RESUMO

Diffuse reflecting (white) and highly absorbing (black) fused silica based materials are presented, which combine volume modified substrates and surfaces equipped with anti-reflective moth-eye-structures. For diffuse reflection, micrometer sized cavities are created in bulk fused silica during a sol-gel process. In contrast, carbon black particles are added to get the highly absorbing material. The moth-eye-structures are prepared by block copolymer micelle nanolithography (BCML), followed by a reactive-ion-etching (RIE) step. The moth-eye-structures drastically reduce the specular reflectance on both diffuse reflecting and highly absorbing samples across a wide spectral range from 250 nm to 2500 nm and for varying incidence angles. The adjustment of the height of the moth-eye-structures allows us to select the spectral position of the specular reflectance minimum, which measures less than 0.1%. Diffuse Lambertian-like scattering and absorbance appear nearly uniform across the selected spectral range, showing a slight decrease with increasing wavelength.

5.
Opt Express ; 28(14): 20324-20333, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680094

RESUMO

The potential of titanium and copper seed layers to enhance the optical properties of aluminum films for ultra-violet (UV) applications is analyzed. The seed layers significantly influence the initial layer growth of aluminum films. For the titanium-seeded aluminum, a surface roughness of 0.34 nm was observed. UV spectral reflectance measurements showed an average higher reflectivity of 4.8% for wavelengths from 120 nm to 200 nm for the aluminum film grown on the titanium seed layer. Furthermore, the titanium-seeded aluminum coatings were stable at an elevated temperature of 225°C and showed no increase in surface roughness or pinholes.

6.
Appl Opt ; 59(7): 1846-1853, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225700

RESUMO

The 2019 Optical Interference Coatings measurement problem comprised the determination of the total backscattering, forward scattering, reflectance, and transmittance spectra of a multilayer system.

7.
Opt Lett ; 43(24): 6025-6028, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547995

RESUMO

In this Letter, defect-induced scattering in 1064 nm high-reflection coatings prepared by dual ion beam sputtering and its suppression were investigated by artificial nodules, finite-difference time-domain simulations, angular resolved scattering (ARS) measurements, and planarization technology. After establishing the geometric model of the nodules grown from ϕ 1 µm SiO2 microspheres, the far-field scattering of the multiple nodules was determined by intensity superposition. For a nodule density of 100 mm-2, there is good agreement between the simulated and measured ARS. The total scattering is ∼500 ppm for the multilayer coating with artificial nodules, which is more than 10 times that for the coating without nodules. Next, an iterative deposition-etching process was used to planarize the defects, which reduced scattering by almost one order of magnitude. Moreover, detailed characterization of the planarized seeds reveals that the planarization technology is a complex process, and it still does not produce a perfect flat surface. The results showed that there is a pit over each planarized seed in the coating surface, which leads to additional scattering. The possible reasons for the presence of these pits are briefly discussed, and the directions for further research are provided at the end of this Letter.

8.
Appl Opt ; 57(29): 8692-8698, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461945

RESUMO

Ultra-precise diamond turning is the method of choice for manufacturing freeform optics. Analyzing surface errors in different spatial frequency ranges has mainly been performed in a one-dimensional representation of the power spectral density function. However, the advanced machine dynamics at the fabrication of freeform mirrors result in highly anisotropic surfaces with regular ripples in different orientations. To properly analyze the entire surface in the frequency regime, a new way of representing the two-dimensional power spectral density is introduced in this paper. This novel tool is utilized for the evaluation of an example freeform mirror.

9.
Opt Lett ; 42(23): 5046-5049, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216176

RESUMO

Light scattering in quarter-wave high-reflection (QWHR) coatings with fully correlated interfaces was reduced by adding Fabry-Perot (FP) cavity structures on top of the multilayer. The properly designed FP cavity can induce destructive interference for fully correlated interfaces and reduce the scattering loss. Compared to QWHR coatings, adding one FP cavity could decrease the scattering at the near specular angles, and two FP cavities have the potential to reduce light scattering in a broad angular range. A low-scattering HR (LSHR) coating using two FP cavities has been realized to suppress light scattering. The numerical scattering calculation illustrated that the total scattering loss of the LSHR was about 30% less than that of the QWHR coatings. The measured angle-resolved scattering of the LSHR coating showed a good correspondence to the numerical calculation, although a small deviation exists in a limited angular range.

10.
Appl Opt ; 53(4): A197-204, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24514215

RESUMO

Scattering from multilayer coatings depends on the roughness of each interface as well as their cross-correlation properties. By depositing thin film coatings under oblique incidence, the cross-correlation properties can be specifically adapted and consequently also the scattering characteristics. This will be illustrated for Mo/Si multilayers, for which a scattering reduction of more than 30% can be achieved. The characterization techniques used comprise of cross-sectional transmission electron microscopy, atomic force microscopy, and angle-resolved light scattering measurements at a wavelength of 13.5 nm.

11.
Appl Opt ; 53(4): A35-41, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24514238

RESUMO

The light scattering of interference coatings is strongly dependent on the wavelength. In addition to the general strong increase of scattering as the wavelengths get shorter, dramatic scatter effects in and around the resonance regions can occur. This is discussed in detail for highly reflective and chirped mirrors. A new instrument is presented which enables spectral angle resolved scatter measurements of high-quality optical components to be performed between 250 and 1500 nm.

12.
Appl Opt ; 52(26): 6579-88, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24085136

RESUMO

Subsurface damage (SSD) in optical components is almost unavoidably caused by mechanical forces involved during grinding and polishing and can be a limiting factor, in particular for applications that require high laser powers or an extreme material strength. In this paper, we report on the characterization of SSD in ground and polished optical surfaces, using different light scattering measurement techniques in the visible and extreme ultraviolet spectral ranges. The materials investigated include fused silica, borosilicate glass, and calcium fluoride. The scattering results are directly linked to classical destructive SSD characterization techniques, based on white light interferometry, optical microscopy, and atomic force microscopy of the substrate topography and cross sections obtained after etching in hydrofluoric acid and fracturing.

13.
Appl Opt ; 52(14): 3279-87, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23669841

RESUMO

Light scattering measurement and analysis is a powerful tool for the characterization of optical and nonoptical surfaces. A new 3D scatter measurement system based on a detector matrix is presented. A compact light-scatter sensor is used to characterize the scattering and nanostructures of surfaces and to identify the origins of anisotropic scattering features. The results from the scatter sensor are directly compared with white light interferometry to analyze surface defects as well as surface roughness and the corresponding scattering distributions. The scattering of surface defects is modeled based on the Kirchhoff integral equation and the approach of Beckmann for rough surfaces.

14.
Opt Express ; 21(23): 27852-64, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514302

RESUMO

Laser produced plasma sources are considered attractive for high-volume extreme-ultraviolet (EUV) lithography because of their high power at the target wavelength 13.5 nm. However, besides the required EUV light, a large amount of infrared (IR) light from the CO2 drive laser is scattered and reflected from the plasma as well as from the EUV mirrors in the optical system. Since these mirrors typically consist of molybdenum and silicon, the reflectance at IR wavelengths is even higher than in the EUV, which leads to high energy loads in the optical system. One option to reduce this is to structure the EUV multilayer, in particular the collector mirror, with an IR grating that has a high IR-suppression in the zeroth order. In this paper, the characterization of such an optical element is reported, including the IR-diffraction efficiency, the EUV performance (reflectance and scattering), and the relevant surface roughness. The measurement results are directly linked to the individual manufacturing steps.

15.
Appl Opt ; 50(9): C148-53, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21460930

RESUMO

Scattering resulting from interface imperfections critically affects the image contrast and optical throughput of multilayer coatings for 13.5 nm. To investigate the scattering mechanisms, at-wavelength scattering measurements in combination with atomic force microscopy are analyzed for an in-depth characterization of the roughness properties. The different impacts of substrate finish and intrinsic thin film roughness on the scattering distribution are separated and analyzed in detail. Furthermore, a novel approach to characterize the roughness of large extreme ultraviolet substrates is presented, based on light scattering measurements at 442 nm.

16.
Appl Opt ; 49(9): 1503-12, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20300144

RESUMO

Roughness-induced light scattering critically affects the performance of optical components, in particular at short wavelengths. We present a stand-alone instrument for angle-resolved scattering and reflectance measurements at 13.5 nm in the extreme-ultraviolet (EUV) spectral range. The achieved dynamic range allows even the scattering of high-quality EUV mirrors on extremely smooth substrates to be investigated. For Mo/Si multilayers, total scatter losses of several percent have been observed, depending on the substrate qualities as well as on roughening and smoothing effects during coating. Different approximate models for estimating the impact of roughness on scatter losses are discussed and compared with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...