Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): 2487-2501.e3, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38772361

RESUMO

Sleep is broadly conserved across the animal kingdom but can vary widely between species. It is currently unclear which selective pressures and regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns in many related fly species. Here, we find that fly species with adaptations to extreme desert environments, including D. mojavensis, exhibit strong increases in baseline sleep compared with D. melanogaster. Long-sleeping D. mojavensis show intact homeostasis, indicating that desert flies carry an elevated drive for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake-related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep patterns of individual D. mojavensis are strongly correlated with their survival time and that disrupting sleep via constant light stimulation renders D. mojavensis more sensitive to starvation. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep drive and for exploring sleep strategies that provide resilience in extreme environments.


Assuntos
Drosophila , Sono , Animais , Sono/fisiologia , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Estresse Fisiológico , Feminino , Masculino , Clima Desértico , Especificidade da Espécie
2.
bioRxiv ; 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37292829

RESUMO

Sleep is broadly conserved across the animal kingdom, but can vary widely between species. It is currently unclear which types of selective pressures and sleep regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns and need for sleep in many related fly species. Here, we find that Drosophila mojavensis, a fly species that has adapted to extreme desert environments, exhibits strong increases in sleep compared to D. melanogaster. Long-sleeping D. mojavensis show intact sleep homeostasis, indicating that these flies carry an elevated need for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity, and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep responses of individual D. mojavensis are correlated with their survival time. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep need, and for exploring sleep strategies that provide resilience in extreme environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...