Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycad005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282644

RESUMO

Hadal sediments are hotspots of microbial activity in the deep sea and exhibit strong biogeochemical gradients. But although these gradients are widely assumed to exert selective forces on hadal microbial communities, the actual relationship between biogeochemistry, functional traits, and microbial community structure remains poorly understood. We tested whether the biogeochemical conditions in hadal sediments select for microbes based on their genomic capacity for respiration and carbohydrate utilization via a metagenomic analysis of over 153 samples from the Atacama Trench region (max. depth = 8085 m). The obtained 1357 non-redundant microbial genomes were affiliated with about one-third of all known microbial phyla, with more than half belonging to unknown genera. This indicated that the capability to withstand extreme hydrostatic pressure is a phylogenetically widespread trait and that hadal sediments are inhabited by diverse microbial lineages. Although community composition changed gradually over sediment depth, these changes were not driven by selection for respiratory or carbohydrate degradation capability in the oxic and nitrogenous zones, except in the case of anammox bacteria and nitrifying archaea. However, selection based on respiration and carbohydrate degradation capacity did structure the communities of the ferruginous zone, where aerobic and nitrogen respiring microbes declined exponentially (half-life = 125-419 years) and were replaced by subsurface communities. These results highlight a delayed response of microbial community composition to selective pressure imposed by redox zonation and indicated that gradual changes in microbial composition are shaped by the high-resilience and slow growth of microbes in the seafloor.

2.
ISME Commun ; 3(1): 133, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135695

RESUMO

Ammonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade's ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36884366

RESUMO

A novel bacterial strain, designated BS-T2-15T, isolated from forest soil in close proximity to decaying oak wood, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences as well as phylogenomic analyses based on coding sequences of 340 concatenated core proteins indicated that strain BS-T2-15T forms a distinct and robust lineage in the Rubrivivax-Roseateles -Leptothrix-Azohydromonas -Aquincola-Ideonella branch of the order Burkholderiales. The amino acid identity and the percentage of conserved proteins between the genome of strain BS-T2-15T and genomes of closely related type strains ranged from 64.27 to 66.57% and from 40.89 to 49.27 %, respectively, providing genomic evidence that strain BS-T2-15T represents a new genus. Its cells are Gram-stain-negative, aerobic, motile by a polar flagellum, rod-shaped and form incrusted white to ivory colonies. Optimal growth is observed at 20-22 °C, pH 6 and 0% NaCl. The predominant fatty acids of strain BS-T2-15T are C16 : 1 ω7c, C16 : 0 and C14 : 0 2-OH. Its polar lipid profile consists of a mixture of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol and its main respiratory quinone is ubiquinone 8. The estimated size of its genome is 6.28 Mb with a DNA G+C content of 69.56 mol%. Therefore, on the basis of phenotypic and genotypic properties, the new strain BS-T2-15T represents a novel genus and species for which the name Scleromatobacter humisilvae gen. nov., sp. nov., is proposed. The type strain is BS-T2-15T (DSM 113115T=UBOCC-M-3373T).


Assuntos
Burkholderiales , Quercus , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Ubiquinona/química , Florestas
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764222

RESUMO

Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.


Assuntos
Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Desnitrificação/fisiologia , Microbiota/fisiologia , Nitratos/metabolismo , Nitrificação/fisiologia , Ciclo do Nitrogênio/fisiologia , Oceanos e Mares
5.
Front Microbiol ; 12: 702016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790173

RESUMO

Seafloor sediments cover the majority of planet Earth and microorganisms inhabiting these environments play a central role in marine biogeochemical cycles. Yet, description of the biogeography and distribution of sedimentary microbial life is still too sparse to evaluate the relative contribution of processes driving this distribution, such as the levels of drift, connectivity, and specialization. To address this question, we analyzed 210 archaeal and bacterial metabarcoding libraries from a standardized and horizon-resolved collection of sediment samples from 18 stations along a longitudinal gradient from the eastern Mediterranean to the western Atlantic. Overall, we found that biogeographic patterns depended on the scale considered: while at local scale the selective influence of contemporary environmental conditions appeared strongest, the heritage of historic processes through dispersal limitation and drift became more apparent at regional scale, and ended up superseding contemporary influences at inter-regional scale. When looking at environmental factors, the structure of microbial communities was correlated primarily with water depth, with a clear transition between 800 and 1,200 meters below sea level. Oceanic basin, water temperature, and sediment depth were other important explanatory parameters of community structure. Finally, we propose increasing dispersal limitation and ecological drift with sediment depth as a probable factor for the enhanced divergence of deeper horizons communities.

6.
ISME J ; 15(12): 3455-3467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34103697

RESUMO

Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.


Assuntos
Bactérias , Microbiota , Archaea/genética , Bactérias/genética , Oxirredução , RNA Ribossômico 16S/genética
7.
Mol Ecol Resour ; 21(6): 1904-1921, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835712

RESUMO

Environmental DNA metabarcoding is a powerful tool for studying biodiversity. However, bioinformatic approaches need to adjust to the diversity of taxonomic compartments targeted as well as to each barcode gene specificities. We built and tested a pipeline based on read correction with DADA2 allowing analysing metabarcoding data from prokaryotic (16S) and eukaryotic (18S, COI) life compartments. We implemented the option to cluster amplicon sequence variants (ASVs) into operational taxonomic units (OTUs) with swarm, a network-based clustering algorithm, and the option to curate ASVs/OTUs using LULU. Finally, taxonomic assignment was implemented via the Ribosomal Database Project Bayesian classifier (RDP) and BLAST. We validated this pipeline with ribosomal and mitochondrial markers using metazoan mock communities and 42 deep-sea sediment samples. The results show that ASVs and OTUs describe different levels of biotic diversity, the choice of which depends on the research questions. They underline the advantages and complementarity of clustering and LULU-curation for producing metazoan biodiversity inventories at a level approaching the one obtained using morphological criteria. While clustering removes intraspecific variation, LULU effectively removes spurious clusters, originating from errors or intragenomic variability. Swarm clustering affected alpha and beta diversity differently depending on genetic marker. Specifically, d-values > 1 appeared to be less appropriate with 18S for metazoans. Similarly, increasing LULU's minimum ratio level proved essential to avoid losing species in sample-poor data sets. Comparing BLAST and RDP underlined that accurate assignments of deep-sea species can be obtained with RDP, but highlighted the need for a concerted effort to build comprehensive, ecosystem-specific databases.


Assuntos
Archaea/classificação , Bactérias/classificação , Biologia Computacional , Código de Barras de DNA Taxonômico , DNA Ambiental , Eucariotos/classificação , Animais , Teorema de Bayes , Biodiversidade , Análise por Conglomerados , Ecossistema , Sedimentos Geológicos , Água do Mar
8.
Sci Rep ; 11(1): 7856, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846371

RESUMO

Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1-V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.


Assuntos
Biodiversidade , Biomarcadores/análise , DNA Ambiental/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Animais , Mar Mediterrâneo
9.
Sci Rep ; 7: 45369, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349950

RESUMO

Agricultural land is typically managed based on visible plant life at the expense of the belowground majority. However, microorganisms mediate processes sustaining plant life and the soil environment. To understand the role of microbes we first must understand what controls soil microbial community assembly. We assessed the distribution and composition of prokaryotic communities from soils representing four geographic regions on the South Island of New Zealand. These soils are under three different uses (dairy, sheep and beef, and high country farming) and are representative of major soil classification groups (brown, pallic, gley and recent). We hypothesized that pH would account for major community patterns based on 16S profiles, but that land use and location would be secondary modifiers. Community diversity and structure was linked to pH, coinciding with land use. Soil classification correlated with microbial community structure and evenness, but not richness in high country and sheep and beef communities. The impact of land use and pH remained significant at the regional scale, but soil classification provided support for community variability not explained by either of those factors. These results suggest that several edaphic properties must be examined at multiple spatial scales to robustly examine soil prokaryotic communities.


Assuntos
Microbiologia do Solo , Solo/classificação , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...