Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 886787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814655

RESUMO

Dengue fever (DF), caused by the dengue virus (DENV), is the most burdensome arboviral disease in the world, with an estimated 400 million infections each year. The Aedes aegypti mosquito is the main vector of DENV and transmits several other human pathogens, including Zika, yellow fever, and chikungunya viruses. Previous studies have shown that the pathogen infection of mosquitoes can alter reproductive fitness, revealing specific vector-pathogen interactions that are key determinants of vector competence. However, only a handful of studies have examined the effect of DENV infection in A. aegypti, showing a reduction in lifespan and fecundity over multiple blood meals. To provide a more comprehensive analysis of the impact of DENV infection on egg laying and fecundity, we assessed egg laying timing in DENV-2 blood-fed mosquitoes (infected group) compared to mock blood-fed mosquitoes (control group). We confirmed a significant decrease in fecundity during the first gonadotrophic cycle. To further investigate this phenotype and the underlying DENV-2 infection-dependent changes in gene expression, we conducted a transcriptomic analysis for differentially expressed genes in the ovaries of A. aegypti infected with DENV-2 vs. mock-infected mosquitoes. This analysis reveals several DENV-2-regulated genes; among them, we identified a group of 12 metabolic genes that we validated using reverse transcription-quantitative PCR (RT-qPCR). Interestingly, two genes found to be upregulated in DENV-infected mosquito ovaries exhibited an antiviral role for DENV-2 in an Aedes cell line. Altogether, this study offers useful insights into the virus-vector interface, highlighting the importance of gene expression changes in the mosquito's ovary during DENV-2 infection in the first gonadotrophic  cycle,  triggering  antiviral  responses  that  may  possibly  interfere  with mosquito reproduction. This information is extremely relevant for further investigation of A. aegypti's ability to tolerate viruses since virally infected mosquitoes in nature constitute a powerful source of supporting viruses during intra-epidemic periods, causing a huge burden on the public health system.

2.
Sci Rep ; 9(1): 6352, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015516

RESUMO

Aedes aegypti is the primary vector of a number of viruses pathogenic to humans including dengue virus (DENV). DENV infection leads to widespread transcriptomic and proteomic alterations in mosquito cells. Here we identified alterations to the mosquito cell secretome during DENV infection by performing liquid chromatography tandem mass spectrometry. We found that an extracellular fragment of low-density lipoprotein receptor-related protein 1 (LRP-1) was present during infection. Previous literature suggests that LRP-1 regulates cholesterol homeostasis. Therefore, we hypothesized that DENV modifies LRP-1 protein expression to maintain host-derived intracellular cholesterol, which would facilitate virus replication within membrane-associated replication compartments. Accordingly, stimuli that are present during flavivirus infection reduced LRP-1 protein expression. We also found that dsRNA knockdown of LRP-1 increased intracellular cholesterol and DENV viral RNA. Further, depletion of intracellular lipids reduced infection. Together, these data suggest that DENV reduces LRP-1 protein expression, possibly through regulated intramembrane proteolysis (RIP), to increase intracellular cholesterol and facilitate replication in Ae. aegypti.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Colesterol/metabolismo , Dengue/virologia , Proteínas de Insetos/metabolismo , Peptídeos/metabolismo , RNA Viral/metabolismo
3.
J Gen Virol ; 98(7): 1702-1712, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28691657

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently been responsible for a serious outbreak of disease in South and Central America. Infection with ZIKV has been associated with severe neurological symptoms and the development of microcephaly in unborn fetuses. Many of the regions involved in the current outbreak are known to be endemic for another flavivirus, dengue virus (DENV), which indicates that a large percentage of the population may have pre-existing DENV immunity. Thus, it is vital to investigate what impact pre-existing DENV immunity has on ZIKV infection. Here, we use primary human myeloid cells as a model for ZIKV enhancement in the presence of DENV antibodies. We show that sera containing DENV antibodies from individuals living in a DENV-endemic area are able to enhance ZIKV infection in a human macrophage-derived cell line and primary human macrophages. We also demonstrate altered pro-inflammatory cytokine production in macrophages with enhanced ZIKV infection. Our study indicates an important role for pre-existing DENV immunity on ZIKV infection in primary human immune cells and establishes a relevant in vitro model to study ZIKV antibody-dependent enhancement.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Vírus da Dengue/imunologia , Macrófagos/imunologia , Infecção por Zika virus/patologia , Zika virus/imunologia , Adulto , Linhagem Celular Tumoral , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Citocinas/biossíntese , Dengue/imunologia , Dengue/virologia , Surtos de Doenças , Feminino , Humanos , Lactente , Masculino , Células U937 , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
4.
Viruses ; 9(7)2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644404

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.


Assuntos
Compostos Alílicos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cisteína/análogos & derivados , Vírus da Dengue/crescimento & desenvolvimento , Dissulfetos/farmacologia , Alho/química , Sulfetos/farmacologia , Compostos Alílicos/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Linhagem Celular , Cisteína/isolamento & purificação , Cisteína/farmacologia , Dissulfetos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Estresse Oxidativo/efeitos dos fármacos , Sulfetos/isolamento & purificação
5.
DNA Cell Biol ; 36(6): 423-427, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28486041

RESUMO

Dengue is currently regarded as the most common arthropod-borne viral disease in tropical and subtropical areas, with an estimated 50-100 million infections occurring each year. Nearly all patients experience a self-limiting clinical course; however, the illness ranges from undifferentiated fever to severe hemorrhagic fever with or without shock syndrome complications. There are several immune cells associated with the pathogenesis of dengue virus (DENV) infection and systemic spread, including dendritic cells, macrophages, and mast cells (MCs). MCs are widely recognized for their immune functions and as cellular regulators of vascular integrity in human skin. Furthermore, these cells are able to detect DENV, which results in activation and degranulation of potent vasoactive mediators prestored in the granules. These mediators can act directly on vascular endothelium, increasing permeability and inducing vascular leakage. This review is designed to present an insight into the role of MCs during DENV infection and the dual functions in immune protection and contribution to the most severe forms of dengue.


Assuntos
Vírus da Dengue/fisiologia , Mastócitos/imunologia , Mastócitos/virologia , Animais , Dengue/etiologia , Dengue/imunologia , Humanos
6.
J Immunol ; 197(11): 4382-4391, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799312

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site.


Assuntos
Degranulação Celular/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Mastócitos/imunologia , Vesículas Secretórias/imunologia , Pele/imunologia , Animais , Citocinas/imunologia , Dengue/patologia , Humanos , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Mastócitos/patologia , Mastócitos/virologia , Camundongos , Vesículas Secretórias/patologia , Vesículas Secretórias/virologia , Pele/patologia , Pele/virologia
7.
Front Immunol ; 7: 380, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746778

RESUMO

Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regard to infectious disease, particularly during immune responses to vector-borne diseases, such as malaria, filariasis, or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.

8.
Parasit Vectors ; 9(1): 516, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27664127

RESUMO

Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated 'transmission blocking vaccines', or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.

9.
PLoS Negl Trop Dis ; 10(9): e0004941, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632170

RESUMO

Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.


Assuntos
Aedes/virologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Proteínas de Insetos/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Aedes/química , Animais , Feminino , Humanos , Camundongos , Saliva/virologia , Glândulas Salivares/química , Células U937
10.
Biochim Biophys Acta ; 1860(9): 1898-909, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27241849

RESUMO

BACKGROUND: Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. METHODS: We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. RESULTS: The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. CONCLUSIONS: We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. GENERAL SIGNIFICANCE: Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector.


Assuntos
Aedes/metabolismo , Vírus da Dengue/metabolismo , Dengue/metabolismo , Dengue/virologia , Ubiquitina/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Aedes/genética , Animais , Apoptose/genética , Linhagem Celular , Dengue/genética , Dengue/prevenção & controle , Vírus da Dengue/genética , Regulação para Baixo/genética , Expressão Gênica/genética , Imunidade Inata/genética , Imunoprecipitação/métodos , Insetos Vetores/genética , Insetos Vetores/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética , Proteínas do Envelope Viral/genética , Vírion/genética
11.
Methods Mol Biol ; 1435: 15-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27188546

RESUMO

West Nile virus (WNV) is a mosquito-borne flavivirus that can cause mild-to-severe disease in humans and horses. WNV was first documented in Uganda in 1937 and passed through the majority of Africa, West Asia, and Europe before arriving in the USA (with infections in New York City in 1999). After the spread of the virus on the US east coast, it traveled westward, northward, and southward through the USA and into Central and South America. WNV can cause fever, rashes, nausea, vomiting, and potentially neuroinvasive disease or death. The virus is sustained through a mosquito-bird-mosquito cycle and there are many species that are competent vectors. Unfortunately, there are no vaccines and the only treatment is supportive care. This chapter highlights the epidemiology and transmission of WNV and provides insight into some of the challenges of controlling WNV disease.


Assuntos
Doenças das Aves/virologia , Doenças dos Cavalos/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , África/epidemiologia , América/epidemiologia , Animais , Aves/virologia , Culicidae/virologia , Europa (Continente)/epidemiologia , Cavalos/virologia , Humanos , Insetos Vetores/virologia , Febre do Nilo Ocidental/veterinária
12.
J Med Entomol ; 53(3): 505-512, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26843451

RESUMO

Dengue virus (DENV) is transmitted by Aedes spp mosquitoes during a bloodmeal uptake. The bloodmeal consists of host cells, immune factors, and possibly blood-borne pathogens, such as arboviruses. Human cells and immune-related factors, like the complement system, can remain active in the bloodmeal and may be able to interact with pathogens in the mosquito. Previous studies have shown that active complement proteins impact Plasmodium parasite viability in the Anopheles midgut. Thus, we investigated the effects of the human complement on DENV infection in the midgut of Aedes aegypti. Our findings indicate that mosquitoes receiving DENV mixed with normal non-inactivated human serum showed significantly lower viremia than those fed with heat-inactivated serum. This implies that human complement may act to limit DENV infection in the mosquito midgut. In addition, we found that human complement C5a protein was able to directly communicate with mosquito cells, affecting the cell antiviral response against DENV. Our results also show that human C5a protein is able to interact with several membrane-bound mosquito proteins. Together these results suggest an important role of human complement protein in DENV transmission.


Assuntos
Aedes/imunologia , Complemento C5a/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Insetos Vetores/imunologia , Aedes/genética , Aedes/virologia , Animais , Dengue/virologia , Vírus da Dengue/fisiologia , Humanos , Insetos Vetores/genética , Insetos Vetores/virologia
13.
PLoS Pathog ; 11(10): e1005202, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26491875

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.


Assuntos
Aedes/virologia , Vírus da Dengue/patogenicidade , Dengue/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Animais , Venenos de Artrópodes/metabolismo , Western Blotting , Cisteína , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Inativação Gênica , Insetos Vetores/metabolismo , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...