Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(4): 584-596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409225

RESUMO

Although long noncoding RNAs (lncRNAs) dominate the transcriptome, their functions are largely unexplored. The extensive overlap of lncRNAs with coding and regulatory sequences restricts their systematic interrogation by DNA-directed perturbation. Here we developed genome-scale lncRNA transcriptome screening using Cas13d/CasRx. We show that RNA targeting overcomes limitations inherent to other screening methods, thereby considerably expanding the explorable space of the lncRNAome. By evolving the screening system toward pan-cancer applicability, it supports molecular and phenotypic data integration to contextualize screening hits or infer lncRNA function. We thereby addressed challenges posed by the enormous transcriptome size and tissue specificity through a size-reduced multiplexed gRNA library termed Albarossa, targeting 24,171 lncRNA genes. Its rational design incorporates target prioritization based on expression, evolutionary conservation and tissue specificity, thereby reconciling high discovery power and pan-cancer representation with scalable experimental throughput. Applied across entities, the screening platform identified numerous context-specific and common essential lncRNAs. Our work sets the stage for systematic exploration of lncRNA biology in health and disease.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Transcriptoma , Neoplasias/genética , Neoplasias/metabolismo
2.
Cancer Cell ; 41(7): 1327-1344.e10, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352862

RESUMO

Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Modelos Moleculares , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...