Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell ; 139(5): 983-98, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19945381

RESUMO

oskar mRNA localization at the oocyte posterior pole is essential for correct patterning of the Drosophila embryo. Here we show at the ultrastructural level that endogenous oskar ribonucleoprotein complexes (RNPs) assemble sequentially with initial recruitment of Hrp48 and the exon junction complex (EJC) to oskar transcripts in the nurse cell nuclei, and subsequent recruitment of Staufen and microtubule motors, following transport to the cytoplasm. oskar particles are non-membrane-bound structures that coalesce as they move from the oocyte anterior to the posterior pole. Our analysis uncovers a role for the EJC component Barentsz in recruiting Tropomyosin II (TmII) to oskar particles in the ooplasm and reveals that TmII is required for kinesin binding to the RNPs. Finally, we show that both kinesin and dynein associate with oskar particles and are the primary microtubule motors responsible for transport of the RNPs within the oocyte.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oócitos/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Dineínas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
PLoS Biol ; 7(9): e1000194, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19753100

RESUMO

The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.


Assuntos
Complexo de Golgi/enzimologia , Fosfolipases A2 do Grupo IV/metabolismo , Animais , Cálcio/metabolismo , Cães , Complexo de Golgi/ultraestrutura , Fosfolipases A2 do Grupo IV/genética , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Via Secretória , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
4.
Genes Dev ; 23(2): 195-207, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19131435

RESUMO

Local translation of asymmetrically enriched mRNAs is a powerful mechanism for functional polarization of the cell. In Drosophila, exclusive accumulation of Oskar protein at the posterior pole of the oocyte is essential for development of the future embryo. This is achieved by the formation of a dynamic oskar ribonucleoprotein (RNP) complex regulating the transport of oskar mRNA, its translational repression while unlocalized, and its translational activation upon arrival at the posterior pole. We identified the nucleo-cytoplasmic shuttling protein PTB (polypyrimidine tract-binding protein)/hnRNP I as a new factor associating with the oskar RNP in vivo. While PTB function is largely dispensable for oskar mRNA transport, it is necessary for translational repression of the localizing mRNA. Unexpectedly, a cytoplasmic form of PTB can associate with oskar mRNA and repress its translation, suggesting that nuclear recruitment of PTB to oskar complexes is not required for its regulatory function. Furthermore, PTB binds directly to multiple sites along the oskar 3' untranslated region and mediates assembly of high-order complexes containing multiple oskar RNA molecules in vivo. Thus, PTB is a key structural component of oskar RNP complexes that dually controls formation of high-order RNP particles and translational silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Sítios de Ligação , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Mutação , Oogênese/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Biossíntese de Proteínas/genética
5.
J Cell Sci ; 120(Pt 7): 1288-98, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17356068

RESUMO

Microsporidia are obligatory intracellular parasites, most species of which live in the host cell cytosol. They synthesize and then transport secretory proteins from the endoplasmic reticulum to the plasma membrane for formation of the spore wall and the polar tube for cell invasion. However, microsporidia do not have a typical Golgi complex. Here, using quick-freezing cryosubstitution and chemical fixation, we demonstrate that the Golgi analogs of the microsporidia Paranosema (Antonospora) grylli and Paranosema locustae appear as 300-nm networks of thin (25- to 40-nm diameter), branching or varicose tubules that display histochemical features of a Golgi, but that do not have vesicles. Vesicles are not formed even if membrane fusion is inhibited. These tubular networks are connected to the endoplasmic reticulum, the plasma membrane and the forming polar tube, and are positive for Sec13, gammaCOP and analogs of giantin and GM130. The spore-wall and polar-tube proteins are transported from the endoplasmic reticulum to the target membranes through these tubular networks, within which they undergo concentration and glycosylation. We suggest that the intracellular transport of secreted proteins in microsporidia occurs by a progression mechanism that does not involve the participation of vesicles generated by coat proteins I and II.


Assuntos
Complexo de Golgi/metabolismo , Estágios do Ciclo de Vida , Microsporídios/crescimento & desenvolvimento , Microsporídios/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Corpo Adiposo/microbiologia , Corpo Adiposo/ultraestrutura , Complexo de Golgi/ultraestrutura , Gryllidae/anatomia & histologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microsporídios/classificação , Microsporídios/patogenicidade , Microsporídios/fisiologia , Microsporídios/ultraestrutura , Microsporidiose/microbiologia , Especificidade da Espécie
6.
Mol Biol Cell ; 18(5): 1595-608, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314401

RESUMO

The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.


Assuntos
Autoantígenos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/metabolismo , Animais , Autoantígenos/genética , Sequência de Bases , Transporte Biológico Ativo , Células COS , Linhagem Celular , Chlorocebus aethiops , DNA/genética , Glicosilação , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
7.
Biochim Biophys Acta ; 1744(3): 340-50, 2005 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-15979506

RESUMO

The morpho-functional principles of intra-Golgi transport are, surprisingly, still not clear, which is in marked contrast to our advanced knowledge of the underlying molecular machineries. Recently, the conceptual and technological hindrances that had delayed progress in this area have been disappearing, and a cluster of powerful morphological techniques has been revealing new glimpses of the organization of traffic in intact cells. Here, we discuss the new concepts around the present models of intra-Golgi transport.


Assuntos
Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Animais , Transporte Biológico , Humanos , Rede trans-Golgi/ultraestrutura
8.
Nat Cell Biol ; 6(11): 1071-81, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502824

RESUMO

The organization of secretory traffic remains unclear, mainly because of the complex structure and dynamics of the secretory pathway. We have thus studied a simplified system, a single synchronized traffic wave crossing an individual Golgi stack, using electron tomography. Endoplasmic-reticulum-to-Golgi carriers join the stack by fusing with cis cisternae and induce the formation of intercisternal tubules, through which they redistribute their contents throughout the stack. These tubules seem to be pervious to Golgi enzymes, whereas Golgi vesicles are depleted of both enzymes and cargo. Cargo then traverses the stack without leaving the cisternal lumen. When cargo exits the stack, intercisternal connections disappear. These findings provide a new view of secretory traffic that includes dynamic intercompartment continuities as key players.


Assuntos
Complexo de Golgi/ultraestrutura , Transporte Biológico , Compartimento Celular , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Microscopia Eletrônica
9.
Mol Biol Cell ; 15(10): 4710-24, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15282336

RESUMO

In the most widely accepted version of the cisternal maturation/progression model of intra-Golgi transport, the polarity of the Golgi complex is maintained by retrograde transport of Golgi enzymes in COPI-coated vesicles. By analyzing enzyme localization in relation to the three-dimensional ultrastructure of the Golgi complex, we now observe that Golgi enzymes are depleted in COPI-coated buds and 50- to 60-nm COPI-dependent vesicles in a variety of different cell types. Instead, we find that Golgi enzymes are concentrated in the perforated zones of cisternal rims both in vivo and in a cell-free system. This lateral segregation of Golgi enzymes is detectable in some stacks during steady-state transport, but it was significantly prominent after blocking endoplasmic reticulum-to-Golgi transport. Delivery of transport carriers to the Golgi after the release of a transport block leads to a diminution in Golgi enzyme concentrations in perforated zones of cisternae. The exclusion of Golgi enzymes from COPI vesicles and their transport-dependent accumulation in perforated zones argues against the current vesicle-mediated version of the cisternal maturation/progression model.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Animais , Transporte Biológico/fisiologia , Sistema Livre de Células , Células Cultivadas , Fibroblastos/citologia , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Ratos
10.
Dev Cell ; 5(4): 583-94, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14536060

RESUMO

Protein transport between the ER and the Golgi in mammalian cells occurs via large pleiomorphic carriers, and most current models suggest that these are formed by the fusion of small ER-derived COPII vesicles. We have examined the dynamics and structural features of these carriers during and after their formation from the ER by correlative video/light electron microscopy and tomography. We found that saccular carriers containing either the large supramolecular cargo procollagen or the small diffusible cargo protein VSVG arise through cargo concentration and direct en bloc protrusion of specialized ER domains in the vicinity of COPII-coated exit sites. This formation process is COPII dependent but does not involve budding and fusion of COPII-dependent vesicles. Fully protruded saccules then move centripetally, evolving into one of two types of carriers (with distinct kinetic and structural features). These findings provide an alternative framework for analysis of ER-to-Golgi traffic.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , 2,2'-Dipiridil/farmacologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte/metabolismo , Linhagem Celular , Extensões da Superfície Celular , Quelantes/farmacologia , Embrião de Galinha , Chlorocebus aethiops , Proteína Coatomer/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Guanosina Difosfato/metabolismo , Humanos , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Microinjeções , Microscopia Imunoeletrônica , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Pró-Colágeno/metabolismo , Transporte Proteico , Ratos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Proteínas de Transporte Vesicular , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...