Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Pollut ; 292(Pt B): 118375, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656681

RESUMO

Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO2-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.


Assuntos
Clorofenóis , Poluentes Ambientais , Óxido de Zinco , Catálise , Luz
3.
Chem Commun (Camb) ; 57(84): 11076-11079, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34617086

RESUMO

We present the thermal evolution of two NASICON-type ceramics namely LATP (Li1+xAlxTi2-x(PO4)3) and LAGP (Li1+xAlxGe2-x(PO4)3) by monitoring the electrode-electrolyte interfaces (i.e., Li/LATP and Li/LAGP) at temperatures up to 330 °C via in situ scanning electron microscopy, post-mortem energy-dispersive spectroscopy, and X-ray diffraction. Upon melting of Li and contacting electrolytes, LAGP decomposes completely to form Li based alloys, while LATP is partially decomposed without alloying.

4.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298450

RESUMO

Li-10 wt % Mg alloy (Li-10 Mg) is used as an anode material for a solid-state battery with excellent electrochemical performance and no evidence of dendrite formation during cycling. Thermal treatment of Li metal during manufacturing improves the interfacial contact between a Li metal electrode and solid electrolyte to achieve an all solid-state battery with increased performance. To understand the properties of the alloy passivation layer, this paper presents the first direct observation of its evolution at elevated temperatures (up to 325°C) by in situ scanning electron microscopy. We found that the morphology of the surface passivation layer was unchanged above the alloy melting point, while the bulk of the material below the surface was melted at the expected melting point, as confirmed by in situ electron backscatter diffraction. In situ heat treatment of Li-based materials could be a key method to improve battery performance.

5.
Nanomaterials (Basel) ; 10(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007812

RESUMO

Hydrogen is widely regarded as a prime energy carrier for bridging the gap between renewable energy supply and demand. As the energy-generating component of the hydrogen cycle, affordable and reliable fuel cells are of key importance to the growth of the hydrogen economy. However, the use of scarce and costly Pt as an electrocatalyst for the oxygen reduction reaction (ORR) remains an issue to be addressed, and in this regard, metal-organic frameworks (MOFs) are viewed as promising non-noble alternatives because of their self-assembly capability and tunable properties. Herein, recent (2018-2020) works on MOF-based electrocatalysts containing N-doped C, Mn, Fe, Co, multiple metals, and multiple sites are reviewed and summarized with a focus on ORR activity, and the principal physicochemical properties and electrochemical performance of these catalysts realized using rotating electrodes are compared.

6.
Materials (Basel) ; 13(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872318

RESUMO

In situ X-ray diffraction was employed to investigate the crystal structure changes in Cr/Si co-doped Li(Co,Fe)PO4 cathode material during a galvanostatic charge/discharge process at a slow rate of C/30. The evolution of the X-ray patterns revealed that the phase transformation between the Cr/Si-Li(Co,Fe)PO4 and Cr/Si-(Co,Fe)PO4 is a two-step process, which involves the formation of an intermediate compound of Cr/Si-Li0.62(Co,Fe)PO4 upon the extraction of Li ions from the pristine phase. Different from the previously reported two biphasic transition steps, the phase transformation of the Cr/Si-Li(Co,Fe)PO4 followed a solid solution and a biphasic reaction pathway at different stages of the delithiation/lithiation process, respectively.

7.
Materials (Basel) ; 13(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260435

RESUMO

In situ magnetic resonance (MR) techniques, such as nuclear MR and MR imaging, have recently gained significant attention in the battery community because of their ability to provide real-time quantitative information regarding material chemistry, ion distribution, mass transport, and microstructure formation inside an operating electrochemical cell. MR techniques are non-invasive and non-destructive, and they can be applied to both liquid and solid (crystalline, disordered, or amorphous) samples. Additionally, MR equipment is available at most universities and research and development centers, making MR techniques easily accessible for scientists worldwide. In this review, we will discuss recent research results in the field of in situ MR for the characterization of Li-ion batteries with a particular focus on experimental setups, such as pulse sequence programming and cell design, for overcoming the complications associated with the heterogeneous nature of energy storage devices. A comprehensive approach combining proper hardware and software will allow researchers to collect reliable high-quality data meeting industrial standards.

8.
Nano Lett ; 20(3): 1607-1613, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017575

RESUMO

We present the first results of in situ scanning electron microscopy (SEM) of an all-solid Li battery with a nickel-manganese-cobalt-oxide (NMC-622) cathode at 50 °C and an operating voltage of 2.7-4.3 V. Experiments were conducted under a constant current at several C rates (nC rate: cycling in 1/n h): C/12, C/6, and C/3. The microstructure evolution during cycling was monitored by continuous secondary electron imaging. We found that the chemical degradation of the solid polymer electrolyte (SPE) was the main mechanism for battery failure. This degradation was observed in the form of a gradual thinning of the SPE as a function of cycling time, resulting in gas generation from the cell. We also present various dynamic electrochemical and mechanical phenomena, as observed by SEM images, and compare the performance of this battery with that of an all-solid Li battery with a LiFePO4 cathode.

9.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093225

RESUMO

In this study, a carbon-coated LiFePO4 (LFP/C) powder was chemically grafted with trifluoromethylphenyl groups in order to increase its hydrophobicity and to protect it from moisture. The modification was carried out by the spontaneous reduction of in situ generated 4-trifluoromethylphenyl ions produced by the diazotization of 4-trifluoromethylaniline. X-ray photoelectron spectroscopy was used to analyze the surface organic species of the modified powder. The hydrophobic properties of the modified powder were investigated by carrying out its water contact angle measurements. The presence of the trifluoromethylphenyl groups on the carbon-coated LiFePO4 powder increased its stability in deionized water and reduced its iron dissolution in the electrolyte used for assembling the battery. The thermogravimetric and inductively coupled plasma atomic emission spectroscopy analyses revealed that 0.2-0.3 wt.% Li was deinserted during grafting and that the loading of the grafted molecules varied from 0.5 to 0.8 wt.% depending on the reaction conditions. Interestingly, the electrochemical performance of the modified LFP/C was not adversely affected by the presence of the trifluoromethylphenyl groups on the carbon surface. The chemical relithiation of the grafted samples was carried out using LiI as the reducing agent and the lithium source in order to obtain fully lithiated grafted powders.

10.
Dalton Trans ; 48(15): 4921-4930, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912794

RESUMO

A series of amorphous materials based on hitherto elusive early transition metal hydrides MH3 (M = Ti, V, and Cr) and capable of binding H2via the Kubas interaction has shown great promise for hydrogen storage applications, approaching US DoE system targets in some cases [Phys. Chem. Chem. Phys., 2015, 17, 9480; Chem. Mat., 2013, 25, 4765; J. Phys. Chem. C, 2016, 120, 11407]. We here apply quantum chemical computational techniques to study models of the H2 binding sites in these materials. Starting with monomeric MH3 (M = Ti, V, and Cr) we progress to M2H6 and then pentametallic systems, analyzing the H2 binding geometries, energies, vibrational frequencies and electronic structure, finding clear evidence of significant Kubas binding. Dihydrogen binding energies range from 22 to 53 kJ mol-1. In agreement with experiment, we conclude that while TiH3 binds H2 exclusively through the Kubas interaction, VH3 and CrH3 additionally physisorb dihydrogen, making these more attractive for practical applications.

11.
Materials (Basel) ; 11(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050008

RESUMO

Sodium-ion batteries (SIBs) are in the spotlight because of their potential use in large-scale energy storage devices due to the abundance and low cost of sodium-based materials. There are many SIB cathode materials under investigation but only a few candidate materials such as carbon, oxides and alloys were proposed as anodes. Among these anode materials, hard carbon shows promising performances with low operating potential and relatively high specific capacity. Unfortunately, its low initial coulombic efficiency and high cost limit its commercial applications. In this study, low-cost maple tree-biomass-derived hard carbon is tested as the anode for sodium-ion batteries. The capacity of hard carbon prepared at 1400 °C (HC-1400) reaches 337 mAh/g at 0.1 C. The initial coulombic efficiency is up to 88.03% in Sodium trifluoromethanesulfonimide (NaTFSI)/Ethylene carbonate (EC): Diethyl carbonate (DEC) electrolyte. The capacity was maintained at 92.3% after 100 cycles at 0.5 C rates. The in situ X-ray diffraction (XRD) analysis showed that no peak shift occurred during charge/discharge, supporting a finding of no sodium ion intercalates in the nano-graphite layer. Its low cost, high capacity and high coulombic efficiency indicate that hard carbon is a promising anode material for sodium-ion batteries.

12.
Nat Commun ; 9(1): 1707, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703937

RESUMO

The conversion of solar energy into chemical fuels can potentially address many of the energy and environment related challenges we face today. In this study, we have demonstrated a photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. By precisely controlling charge carrier flow at the nanoscale, the wafer-level photochemical diode arrays exhibited solar-to-hydrogen efficiency ~3.3% in neutral (pH ~ 7.0) overall water splitting reaction. In part of the visible spectrum (400-485 nm), the energy conversion efficiency and apparent quantum yield reaches ~8.75% and ~20%, respectively, which are the highest values ever reported for one-step visible-light driven photocatalytic overall pure water splitting. The effective manipulation and control of charge carrier flow in nanostructured photocatalysts provides critical insight in achieving high efficiency artificial photosynthesis, including the efficient and selective reduction of CO2 to hydrocarbon fuels.

13.
Adv Mater ; 28(38): 8388-8397, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27456856

RESUMO

The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN.

14.
Chemphyschem ; 17(6): 822-8, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26762590

RESUMO

Reversible hydrogen storage under ambient conditions has been identified as a major bottleneck in enabling a future hydrogen economy. Herein, we report an amorphous vanadium(III) alkyl hydride gel that binds hydrogen through the Kubas interaction. The material possesses a gravimetric adsorption capacity of 5.42 wt % H2 at 120 bar and 298 K reversibly at saturation with no loss of capacity after ten cycles. This corresponds to a volumetric capacity of 75.4 kgH2 m(-3) . Raman experiments at 100 bar confirm that Kubas binding is involved in the adsorption mechanism. The material possesses an enthalpy of H2 adsorption of +0.52 kJ mol(-1) H2 , as measured directly by calorimetry, and this is practical for use in a vehicles without a complex heat management system.

15.
Phys Chem Chem Phys ; 17(14): 9480-7, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25766409

RESUMO

In this paper we present amorphous chromium(III) hydride gels that show promise as reversible room temperature hydrogen storage materials with potential for exploitation in mobile applications. The material uses hydride ligands as a light weight structural feature to link chromium(III) metal centres together which act as binding sites for further dihydrogen molecules via the Kubas interaction, the mode of hydrogen binding confirmed by high pressure Raman spectroscopy. The best material possesses a reversible gravimetric storage of 5.08 wt% at 160 bar and 25 °C while the volumetric density of 78 kgH2 m(-3) compares favourably to the DOE ultimate system goal of 70 kg m(-3). The enthalpy of hydrogen adsorption is +0.37 kJ mol(-1) H2 as measured directly at 40 °C using an isothermal calorimeter coupled directly to a Sieverts gas sorption apparatus. These data support a mechanism confirmed by computations in which the deformation enthalpy required to open up binding sites is almost exactly equal and opposite to the enthalpy of hydrogen binding to the Kubas sites, and suggests that this material can be used in on-board applications without a heat management system.

16.
ChemSusChem ; 8(2): 301-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209169

RESUMO

Proton conductivity in a series of mesoporous niobium and tantalum metal oxide (mX2 O5 ) composites of naphthalene sulfonic acid formaldehyde resin (NSF) that are resistant to moisture loss at temperatures greater than 50 °C is reported. The investigation focuses on the effect to proton conductivity by changing pore size and metal in the mesostructure of the mX2 O5 system and thus, a series of mX2 O5 -NSF composites were synthesized with C6 , C12 , and C18 templates. These were characterized by XRD, thermogravimetric analysis, nitrogen adsorption, and scanning TEM and then studied using impedance spectroscopy to establish proton conductivity values at various temperatures ranging from 25 to 150 °C. The most promising sample displayed a conductivity of 21.96 mS cm(-1) at 100 °C, surpassing the literature value for Nafion 117 (ca. 8 mS cm(-1) ). (1) H and (13) C solid state NMR studies the mX2 O5 -NSF composites demonstrate that the oligomeric nature of the NSF is preserved while in contact with the mX2 O5 surface, thus facilitating conductivity.


Assuntos
Mesilatos/química , Nióbio/química , Óxidos/química , Prótons , Tantálio/química , Fontes de Energia Elétrica , Eletroquímica , Ácidos de Lewis/química , Membranas Artificiais , Peso Molecular , Movimento (Física) , Porosidade
17.
ChemSusChem ; 7(6): 1618-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24700813

RESUMO

Melon-seed-shaped LiFePO4 hollow micro- and sub-micrometer plates have been synthesized via a polyol-assisted hydrothermal method. The as-prepared LiFePO4 hollow materials were new with regard to their single-crystalline shells with large ac surfaces. Based on the detailed analysis of time-dependent studies, a possible growth mechanism was proposed involving nucleation, anisotropic growth, selective etching, and reversed recrystallization. The effects of polyol concentration, reaction temperature, and feeding sequence of precursors on the growth of LiFePO4 materials were investigated. The electrochemical properties of as-prepared LiFePO4 hollow materials were examined as cathode materials.


Assuntos
Fontes de Energia Elétrica , Ferro/química , Lítio/química , Fosfatos/química , Cristalização , Eletroquímica , Microscopia Eletrônica de Varredura , Tamanho da Partícula
18.
ACS Nano ; 7(9): 7886-93, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23957654

RESUMO

The conversion of solar energy into hydrogen via water splitting process is one of the key sustainable technologies for future clean, storable, and renewable source of energy. Therefore, development of visible light-responsive and efficient photocatalyst material has been of immense interest, but with limited success. Here, we show that overall water splitting under visible-light irradiation can be achieved using a single photocatalyst material. Multiband InGaN/GaN nanowire heterostructures, decorated with rhodium (Rh)/chromium-oxide (Cr2O3) core-shell nanoparticles can lead to stable hydrogen production from pure (pH ∼ 7.0) water splitting under ultraviolet, blue and green-light irradiation (up to ∼560 nm), the longest wavelength ever reported. At ∼440-450 nm wavelengths, the internal quantum efficiency is estimated to be ∼13%, the highest value reported in the visible spectrum. The turnover number under visible light well exceeds 73 in 12 h. Detailed analysis further confirms the stable photocatalytic activity of the nanowire heterostructures. This work establishes the use of metal-nitrides as viable photocatalyst for solar-powered artificial photosynthesis for the production of hydrogen and other solar fuels.

19.
J Am Chem Soc ; 133(39): 15434-43, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21863869

RESUMO

Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...