Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Heart Lung ; 63: 35-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37748302

RESUMO

BACKGROUND: Postoperative delirium occurs in up to 80% of patients undergoing esophagectomy. We performed an exploratory proteomic analysis to identify protein pathways that may be associated with delirium post-esophagectomy. OBJECTIVES: Identify proteins associated with delirium and delirium severity in a younger and higher-risk surgical population. METHODS: We performed a case-control study using blood samples collected from patients enrolled in a negative, randomized, double-blind clinical trial. English speaking adults aged 18 years or older, undergoing esophagectomy, who had blood samples obtained were included. Cases were defined by a positive delirium screen after surgery while controls were patients with negative delirium assessments. Delirium was assessed using Richmond Agitation Sedation Scale and Confusion Assessment Method for the Intensive Care Unit, and delirium severity was assessed by Delirium Rating Scale-Revised-98. Blood samples were collected pre-operatively and on post-operative day 1, and discovery proteomic analysis was performed. Between-group differences in median abundance ratios were reported using Wilcoxon-Mann-Whitney Odds (WMWodds1) test. RESULTS: 52 (26 cases, 26 controls) patients were included in the study with a mean age of 64 (SD 9.6) years, 1.9% were females and 25% were African American. The median duration of delirium was 1 day (IQR: 1-2), and the median delirium/coma duration was 2.5 days (IQR: 2-4). Two proteins with greater relative abundance ratio in patients with delirium were: Coagulation factor IX (WMWodds: 1.89 95%CI: 1.0-4.2) and mannosyl-oligosaccharide 1,2-alpha-mannosidase (WMWodds: 2.4 95%CI: 1.03-9.9). Protein abundance ratios associated with mean delirium severity at postoperative day 1 were Complement C2 (Spearman rs = -0.31, 95%CI [-0.55, -0.02]) and Mannosyl-oligosaccharide 1,2-alpha-mannosidase (rs = 0.61, 95%CI = [0.29, 0.81]). CONCLUSIONS: We identified changes in proteins associated with coagulation, inflammation, and protein handling; larger, follow-up studies are needed to confirm our hypothesis-generating findings.


Assuntos
Delírio , Delírio do Despertar , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Estudos de Casos e Controles , Delírio/etiologia , Delírio/epidemiologia , Esofagectomia/efeitos adversos , Proteômica , Unidades de Terapia Intensiva
2.
Proc Natl Acad Sci U S A ; 120(22): e2220041120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216505

RESUMO

Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.


Assuntos
Histonas , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Proteína de Ligação a TATA-Box , Enzimas de Conjugação de Ubiquitina , gama-Glutamil Hidrolase , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
4.
Mol Biochem Parasitol ; 232: 111203, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31381949

RESUMO

Toxoplasma gondii is a protozoan parasite that has a tremendous impact on human health and livestock. High seroprevalence among humans and other animals is facilitated by the conversion of rapidly proliferating tachyzoites into latent bradyzoites that are housed in tissue cysts, which allow transmission through predation. Epigenetic mechanisms contribute to the regulation of gene expression events that are crucial in both tachyzoites as well as their development into bradyzoites. Acetylation of histones is one of the critical histone modifications that is linked to active gene transcription. Unlike most early-branching eukaryotes, Toxoplasma possesses two GCN5 homologues, one of which, GCN5b, is essential for parasite viability. Surprisingly, GCN5b does not associate with most of the well-conserved proteins found in the GCN5 complexes of other eukaryotes. Of particular note is that GCN5b interacts with multiple putative transcription factors that have plant-like DNA-binding domains denoted as AP2. To understand the function of GCN5b and its role(s) in epigenetic gene regulation of stage switching, we performed co-immunoprecipitation of GCN5b under normal and bradyzoite induction conditions. We report the greatest resolution of the GCN5b complex to date under these various culture conditions. Moreover, reciprocal co-IPs were performed with distinct GCN5b-interacting AP2 factors (AP2IX-7 and AP2XII-4) to delineate the interactomes of each putative transcription factor. Our findings suggest that GCN5b is associated with at least two distinct complexes that are characterized by two different pairs of AP2 factors, and implicate up to four AP2 proteins to be involved with GCN5b-mediated gene regulation.


Assuntos
Histona Acetiltransferases/metabolismo , Lisina Acetiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferases/genética , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Fatores de Transcrição/genética
5.
Proteomes ; 7(1)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781898

RESUMO

The author wishes to make the following corrections to the methods section of their paper [...].

6.
J Biol Chem ; 294(1): 168-181, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420428

RESUMO

Alterations in endoplasmic reticulum (ER) calcium (Ca2+) levels diminish insulin secretion and reduce ß-cell survival in both major forms of diabetes. The mechanisms responsible for ER Ca2+ loss in ß cells remain incompletely understood. Moreover, a specific role for either ryanodine receptor (RyR) or inositol 1,4,5-triphosphate receptor (IP3R) dysfunction in the pathophysiology of diabetes remains largely untested. To this end, here we applied intracellular and ER Ca2+ imaging techniques in INS-1 ß cells and isolated islets to determine whether diabetogenic stressors alter RyR or IP3R function. Our results revealed that the RyR is sensitive mainly to ER stress-induced dysfunction, whereas cytokine stress specifically alters IP3R activity. Consistent with this observation, pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R with xestospongin C prevented ER Ca2+ loss under ER and cytokine stress conditions, respectively. However, RyR blockade distinctly prevented ß-cell death, propagation of the unfolded protein response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-treated INS-1 ß cells and mouse islets and Akita islets. Monitoring at the single-cell level revealed that ER stress acutely increases the frequency of intracellular Ca2+ transients that depend on both ER Ca2+ leakage from the RyR and plasma membrane depolarization. Collectively, these findings indicate that RyR dysfunction shapes ER Ca2+ dynamics in ß cells and regulates both UPR activation and cell death, suggesting that RyR-mediated loss of ER Ca2+ may be an early pathogenic event in diabetes.


Assuntos
Sinalização do Cálcio , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Secretoras de Insulina/patologia , Compostos Macrocíclicos/farmacologia , Masculino , Camundongos , Camundongos Mutantes , Oxazóis/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
7.
Proteomes ; 6(4)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562941

RESUMO

Glutamatergic projections from the cortex and dopaminergic projections from the substantia nigra or ventral tegmental area synapse on dendritic spines of specific GABAergic medium spiny neurons (MSNs) in the striatum. Direct pathway MSNs (dMSNs) are positively coupled to protein kinase A (PKA) signaling and activation of these neurons enhance specific motor programs whereas indirect pathway MSNs (iMSNs) are negatively coupled to PKA and inhibit competing motor programs. An imbalance in the activity of these two programs is observed following increased dopamine signaling associated with exposure to psychostimulant drugs of abuse. Alterations in MSN signaling are mediated by changes in MSN protein post-translational modifications, including phosphorylation. Whereas direct changes in specific kinases, such as PKA, regulate different effects observed in the two MSN populations, alterations in the specific activity of serine/threonine phosphatases, such as protein phosphatase 1 (PP1) are less well known. This lack of knowledge is due, in part, to unknown, cell-specific changes in PP1 targeting proteins. Spinophilin is the major PP1-targeting protein in striatal postsynaptic densities. Using proteomics and immunoblotting approaches along with a novel transgenic mouse expressing hemagglutainin (HA)-tagged spinophilin in dMSNs and iMSNs, we have uncovered cell-specific regulation of the spinophilin interactome following a sensitizing regimen of amphetamine. These data suggest regulation of spinophilin interactions in specific MSN cell types and may give novel insight into putative cell-specific, phosphatase-dependent signaling pathways associated with psychostimulants.

8.
PLoS One ; 13(10): e0204658, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278072

RESUMO

Deleted in Liver Cancer-1 (DLC1), a member of the RhoGAP family of proteins, functions as a tumor suppressor in several cancers including breast cancer. However, its clinical relevance is unclear in breast cancer. In this study, expression of DLC1 was correlated with prognosis using publicly available breast cancer gene expression datasets and quantitative Reverse Transcription PCR in cohorts of Estrogen Receptor-positive (ER+) breast cancer. Low expression of DLC1 correlates with poor prognosis in patients with ER+ breast cancer with further decrease in metastatic lesions. The Cancer Genome Atlas (TCGA) data showed that down regulation of DLC1 is not due to methylation or mutations. To seek further insights in understanding the role of DLC1 in ER+ breast cancer, we stably overexpressed DLC1-full-length (DLC1-FL) in T-47D breast cancer cells; this inhibited cell colony formation significantly in vitro compared to its control counterpart. Label-free global proteomic and TiO2 phosphopeptide enrichment assays (ProteomeXchange identifier PXD008220) showed that 205 and 122 phosphopeptides were unique to DLC1-FL cells and T-47D-control cells, respectively, whereas 6,726 were quantified by phosphoproteomics analysis in both conditions. The top three significant clusters of differentially phosphopeptides identified by DAVID pathway analysis represent cell-cell adhesion, mRNA processing and splicing, and transcription regulation. Phosphoproteomics analysis documented an inverse relation between DLC1 expression and several phosphopeptides including epithelial cell transforming sequence 2 (ECT2). Decreased phosphorylation of ECT2 at the residue T359, critical for its active conformational change, was validated by western blot. In addition, the ECT2 T359-containing phosphopeptide was detected in both basal and luminal patient-derived breast cancers breast cancer phosphoproteomics data on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Assay portal. Together, for the first time, this implicates ECT2 phosphorylation in breast cancer, which has been proposed as a therapeutic target in lung cancer. In conclusion, this data suggests that low expression of DLC1 is associated with poor prognosis. Targeting ECT2 phosphopeptides could provide a promising mechanism for controlling poor prognosis seen in DLC1low ER+ breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Receptores de Estrogênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Metilação de DNA/fisiologia , Regulação para Baixo/fisiologia , Estudos de Avaliação como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Fosforilação/fisiologia , Prognóstico , Proteômica/métodos , Proteínas Proto-Oncogênicas , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia
9.
J Biol Chem ; 291(30): 15714-26, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27255709

RESUMO

The essential Saccharomyces cerevisiae ATPase Mot1 globally regulates transcription by impacting the genomic distribution and activity of the TATA-binding protein (TBP). In vitro, Mot1 forms a ternary complex with TBP and DNA and can use ATP hydrolysis to dissociate the TBP-DNA complex. Prior work suggested an interaction between the ATPase domain and a functionally important segment of DNA flanking the TATA sequence. However, how ATP hydrolysis facilitates removal of TBP from DNA is not well understood, and several models have been proposed. To gain insight into the Mot1 mechanism, we dissected the role of the flanking DNA segment by biochemical analysis of complexes formed using DNAs with short single-stranded gaps. In parallel, we used a DNA tethered cleavage approach to map regions of Mot1 in proximity to the DNA under different conditions. Our results define non-equivalent roles for bases within a broad segment of flanking DNA required for Mot1 action. Moreover, we present biochemical evidence for two distinct conformations of the Mot1 ATPase, the detection of which can be modulated by ATP analogs as well as DNA sequence flanking the TATA sequence. We also show using purified complexes that Mot1 dissociation of a stable, high affinity TBP-DNA interaction is surprisingly inefficient, suggesting how other transcription factors that bind to TBP may compete with Mot1. Taken together, these results suggest that TBP-DNA affinity as well as other aspects of promoter sequence influence Mot1 function in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Fúngico/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/genética , DNA Fúngico/genética , Hidrólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética
10.
J Biol Chem ; 291(29): 15307-19, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226635

RESUMO

Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores de Elongação da Transcrição/genética
11.
Mol Biosyst ; 10(7): 1730-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24671508

RESUMO

The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.


Assuntos
Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo , Domínio Catalítico , Fosforilação , Proteômica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...