Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Radioact ; 216: 106178, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32056787

RESUMO

The intent of minimizing the impact of the large amount of radioactive material potentially released into the atmosphere in a nuclear event implies preparedness activities. In the early phase and in absence of field observations, countermeasures would largely rely on a previous characterization of the transport and dispersion of radioactive particles and the potential levels of radioactive contamination. This study presents a methodology to estimate the atmospheric transport, dispersion and ground deposition patterns of radioactive particles. The methodology starts identifying the main airflow directions by means of the air mass trajectories calculated by the HYSPLIT model, and, secondly, the dispersion and the ground deposition characteristics associated with each airflow pattern by running the RIMPUFF atmospheric dispersion model. From the basis of these results, different products can be obtained, such as the most probable transport direction, spatial probability distribution of deposition and the geographical probability distribution of deposition above certain predefined threshold. The method is trained on the HYSPLIT trajectories and RIMPUFF simulations during five consecutive years (2012-2016) at the Almaraz Nuclear Power Plant, in Spain. 3644 forward air mass trajectories were calculated (at 00 and 12 UTC, and with duration of 36 h). Eight airflow patterns were identified, and within each pattern, the persistent days, i.e. those days in which trajectories at 00 and 12 UTC grouped into the same airflow pattern, were extracted to simulate the atmospheric dispersion and ground deposition following a hypothetical ISLOCA accident sequence of 35 h. In total, 833 simulations were carried out, in which ground contamination was estimated at cell level on a non-homogeneous geographical grid spacing up to 800 km from Almaraz. The corresponding outcomes show a large variability in the area covered and in deposition values between airflow patterns, which provide comprehensive and oriented information and resources to decision makers to emergency management.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Ar , Emergências , Modelos Teóricos , Centrais Nucleares , Liberação Nociva de Radioativos , Espanha
2.
Sci Total Environ ; 403(1-3): 34-58, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18614203

RESUMO

A methodological approach which includes conceptual developments, methodological aspects and software tools have been developed in the Spanish context, based on the BIOMASS "Reference Biospheres Methodology". The biosphere assessments have to be undertaken with the aim of demonstrating compliance with principles and regulations established to limit the possible radiological impact of radioactive waste disposals on human health and on the environment, and to ensure that future generations will not be exposed to higher radiation levels than those that would be acceptable today. The biosphere in the context of high-level waste disposal is defined as the collection of various radionuclide transfer pathways that may result in releases into the surface environment, transport within and between the biosphere receptors, exposure of humans and biota, and the doses/risks associated with such exposures. The assessments need to take into account the complexity of the biosphere, the nature of the radionuclides released and the long timescales considered. It is also necessary to make assumptions related to the habits and lifestyle of the exposed population, human activities in the long term and possible modifications of the biosphere. A summary on the Spanish methodological approach for biosphere assessment are presented here as well as its application in a Spanish generic case study. A reference scenario has been developed based on current conditions at a site located in Central-West Spain, to indicate the potential impact to the actual population. In addition, environmental change has been considered qualitatively through the use of interaction matrices and transition diagrams. Unit source terms of (36)Cl, (79)Se, (99)Tc, (129)I, (135)Cs, (226)Ra, (231)Pa, (238)U, (237)Np and (239)Pu have been taken. Two exposure groups of infants and adults have been chosen for dose calculations. Results are presented and their robustness is evaluated through the use of uncertainty and sensitivity analyses.


Assuntos
Ecossistema , Resíduos Radioativos , Eliminação de Resíduos/métodos , Adulto , Animais , Pré-Escolar , Conservação dos Recursos Naturais , Meio Ambiente , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/métodos , Contaminação Radioativa de Alimentos , Humanos , Lactente , Modelos Biológicos , Eliminação de Resíduos/legislação & jurisprudência
3.
Sci Total Environ ; 384(1-3): 36-47, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17588645

RESUMO

The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.


Assuntos
Resíduos Radioativos , Eliminação de Resíduos/métodos , Conservação dos Recursos Naturais , Meio Ambiente , Modelos Teóricos , Eliminação de Resíduos/estatística & dados numéricos , Software , Espanha , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...