Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 196: 106733, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408709

RESUMO

Microencapsulation of active pharmaceutical ingredients (APIs) for preparation of long acting injectable (LAI) formulations is an auspicious technique to enable preclinical characterization of a broad variety of APIs, ideally independent of their physicochemical and pharmacokinetic (PK) characteristics. During early API discovery, tunable LAI formulations may enable pharmacological proof-of-concept for the given variety of candidates by tailoring the level of plasma exposure over the duration of various timespans. Although numerous reports on small scale preparation methods for LAIs utilizing copolymers of lactic and glycolic acid (PLGA) and polymers of lactic acid (PLA) highlight their potential, application in formulation screening and use in preclinical in vivo studies is yet very limited. Transfer from downscale formulation preparation to in vivo experiments is hampered in early preclinical API screening by the large number of API candidates with simultaneously very limited available amount in the lower sub-gram scale, lack of formulation stability and deficient tunability of sustained release. We hereby present a novel comprehensive platform tool for tailored extended-release formulations, aiming to support a variety of preclinical in vivo experiments with ranging required plasma exposure levels and timespans. A novel small-scale spray drying process was successfully implemented by using an air brush based instrument for preparation of PLGA and PLA based formulations. Using Design of Experiments (DoE), required API amount of 250 mg was demonstrated to suffice for identification of dominant polymer characteristics with largest impact on sustained release capability for an individual API. BI-3231, a hydrophilic and weakly acidic small compound with good water solubility and permeability, but low metabolic stability, was used as an exemplary model for one of the many candidates during API discovery. Furthermore, an in vitro to in vivo correlation (IVIVC) of API release rate was established in mice, which enabled the prediction of in vivo plasma concentration plateaus after single subcutaneous injection, using only in vitro dissolution profiles of screened formulations. By tailoring LAI formulations and their doses for acute and sub-chronic preclinical experiments, we exemplary demonstrate the practical use for BI-3231. Pharmacological proof-of-concept could be enabled whilst circumventing the need of multiple administration as result of extensive hepatic metabolism and simultaneously superseding numerous in vivo experiments for formulation tailoring.

2.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452112

RESUMO

Bidirectional permeability measurement with cellular models grown on Transwell inserts is widely used in pharmaceutical research since it not only provides information about the passive permeability of a drug, but also about transport proteins involved in the active transport of drug substances across physiological barriers. With the increasing number of investigative drugs coming from chemical space beyond Lipinski's Rule of 5, it becomes more and more challenging to provide meaningful data with the standard permeability assay. This is exemplified here by the difficulties we encountered with the cyclic depsipeptides emodepside and its close analogs with molecular weight beyond 1000 daltons and cLogP beyond 5. The aim of this study is to identify potential reasons for these challenges and modify the permeability assays accordingly. With the modified assay, intrinsic permeability and in vitro efflux of depsipeptides could be measured reliably. The improved correlation to in vivo bioavailability and tissue distribution data indicated the usefulness of the modified permeability assay for the in vitro screening of compounds beyond the Rule of 5.

3.
ACS Biomater Sci Eng ; 6(2): 1074-1089, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464867

RESUMO

Sequence-defined lipo-oligomers generated via solid-phase assisted synthesis have been developed as siRNA delivery systems for RNA-interference (RNAi) based gene silencing. Here, novel siRNA lipo-polyplexes were established, which were postmodified with monovalent or bivalent DBCO-PEG24 agents terminated with peptide GE11 (YHWYGYTPQNVI) for epidermal growth factor receptor (EGFR)-targeted siRNA delivery into EGFR-positive tumor cells. Lipo-oligomers containing eight cationizable succinoyltetraethylene-pentamine (Stp) units mediated higher siRNA nanoparticle core stability than those containing four Stp units, and the incorporation of histidines for enhanced endosomal buffer capacity resulted in an improved gene silencing efficiency. Lipo-polyplexes modified with monovalent or bivalent PEG-GE11 via the copper-free click reaction possessed significantly enhanced cellular internalization and transfection efficiency in EGF receptor-positive human cervical KB and hepatoma Huh7 cells in comparison with the corresponding lipo-polyplexes shielded with PEG24 without targeting. Furthermore, modification with the bivalent DBCO-PEG24-GE11 ligand resulted in higher gene silencing efficiency than modification with the same equivalents of the monovalent DBCO-PEG24-GE11 ligand.


Assuntos
Receptores ErbB , Inativação Gênica , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , RNA Interferente Pequeno/genética , Transfecção
4.
Int J Pharm ; 569: 118570, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31352048

RESUMO

Small interfering RNA (siRNA) represents a new class of therapeutic agents. Its successful intracellular delivery is a major challenge. Lipo-oligomeric carriers can complex siRNA into lipopolyplexes and thus mediate its cellular uptake. In this study, siRNA against the kinesin related mRNA EG5 gene (siEG5) and the microtubule inhibitor pretubulysin (PT) were co-formulated into polyplexes using azide-containing lipo-oligomer 1198. Nanoparticles were further modified by click reaction using shielding agent DBCO-PEG or EGFR targeting peptide GE11 (DBCO-PEG-GE11). Polyplexes displayed efficient payload incorporation and homogenous particle sizes of 200 nm. The biological effects of the unmodified and surface-functionalized polyplexes were investigated. The successful GE11-mediated intracellular delivery of siRNA into the EGFR overexpressing KB and Huh7 cell lines facilitated potent silencing of an EGFP-luciferase reporter gene by GFP siRNA. Specific downregulation of EG5 mRNA by siEG5 resulted in the expected antitumoral activity. The combination formulation 1198 siEG5 + PT provided superior antitumoral activity over free PT and 1198 siEG5.


Assuntos
Cinesinas/genética , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Moduladores de Tubulina/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/genética , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases/genética , Polietilenoglicóis/administração & dosagem
5.
Mol Pharm ; 16(6): 2405-2417, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31025870

RESUMO

In the current study, nanoparticles containing the antimetabolite drug methotrexate (MTX) and the novel tubulin-binding drug pretubulysin (PT) were developed for combination chemotherapy. Polyelectrolyte complexes were formed based on ∼20 nm cationic nanomicelles of lipo-oligomer 454 with the anionic MTX at the molar ratio of 3:1, resulting in spherical nanoparticles with sizes of 150 nm (454 MTX). Particle formation in the presence of PT, which also interacts with 454, resulted in coloaded micelle complexes (454 PT+MTX) of 170 nm as demonstrated by transmission electron microscopy and dynamic light scattering measurements. Both drugs were incorporated to a high extent (∼85% for MTX, ∼70% for PT). Nanoparticles were stable in up to 20% serum and physiological NaCl solution. Cellular internalization of 454 PT+MTX into L1210 leukemia and KB cervix carcinoma cells was determined by confocal light scattering microscopy. The antitumor activity of the drug combination PT+MTX in both cell lines was strongly increased by drug formulation with 454 with IC50 values of PT+MTX decreasing 11-fold from 0.22 nM to 19 pM on L1210 cells and 6-fold from 2.8 to 0.48 nM on KB cervix carcinoma cells. Systemic treatment of NMRI nu/nu mice bearing subcutaneous L1210 tumors with 454 PT+MTX nanoparticles resulted in a more effective delay of tumor growth in comparison to the free drug combination of PT+MTX without 454. Importantly, nanoparticle formulation of PT+MTX with 454 increased the survival of mice by more than 100% compared to that of the buffer treated group and more than 40% compared to that of the free drug group.


Assuntos
Leucemia L1210/tratamento farmacológico , Metotrexato/química , Nanopartículas/química , Oligopeptídeos/química , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Feminino , Metotrexato/uso terapêutico , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Oligopeptídeos/uso terapêutico
6.
Pharmacol Res Perspect ; 7(1): e00460, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30693087

RESUMO

Pretubulysin (PT), a potent tubulin-binding antitumoral drug, and the well-established antimetabolite methotrexate (MTX) were tested separately or in combination (PT+MTX) for antitumoral activity in L1210 leukemia cells or KB cervix carcinoma cells in vitro and in vivo in NMRI-nu/nu tumor mouse models. In cultured L1210 cells, treatment with PT or MTX displays strong antitumoral effects in vitro, and the combination PT+MTX exceeds the effect of single drugs. PT also potently kills the MTX resistant KB cell line, without significant MTX combination effect. Cell cycle analysis reveals the expected arrest in G1/S by MTX and in G2/M by PT. In both cell lines, the PT+MTX combination induces a G2/M arrest which is stronger than the PT-triggered G2/M arrest. PT+MTX does not change rates of apoptotic L1210 or KB cells as compared to single drug applications. Confocal laser scanning microscopy images show the microtubule disruption and nuclear fragmentation induced by PT treatment of L1210 and KB cells. MTX changes the architecture of the F-actin skeleton. PT+MTX combines the toxic effects of both drugs. In the in vivo setting, the antitumoral activity of drugs differs from their in vitro cytotoxicity, but their combination effects are more pronounced. MTX on its own does not display significant antitumoral activity, whereas PT reduces tumor growth in both L1210 and KB in vivo models. Consistent with the cell cycle effects, MTX combined at moderate dose boosts the antitumoral effect of PT in both in vivo tumor models. Therefore, the PT+MTX combination may present a promising therapeutic approach for different types of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Metotrexato/uso terapêutico , Oligopeptídeos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia L1210/tratamento farmacológico , Metotrexato/farmacologia , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Oligopeptídeos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico
7.
J Gene Med ; 20(7-8): e3041, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29949222

RESUMO

BACKGROUND: Developing new drug delivery carriers addressing chemoresistance is still full of challenges and opportunities. As the rapid development of small interfering RNA (siRNA) provides promising therapeutic perspectives, nanocarriers for drug and siRNA co-delivery present new alternatives for cancer therapy. METHODS: A co-delivery nanosystem for methotrexate (MTX) or gamma-glutamylated derivatives (gE2 -MTX and gE5 -MTX) and antitumoral EG5 siRNA has been developed utilizing the sequence defined cationic lipo-oligomers 454, 1021 and 1027. Based on a lipo-oligomer-MTX-siRNA core, an epidermal growth factor receptor (EGFR) targeted delivery system was established via post modification with the GE11 targeting peptide. RESULTS: Almost 100% MTX derivative incorporation was achieved in gE2 -MTX or gE5 -MTX siRNA/454 polyplexes, whereas the particle sizes (100-150 nm) and siRNA binding abilities were well maintained. Our co-delivery system greatly increased the MTX sensitivity of MTX resistant KB cells. Enhanced cellular internalization of GE11 siRNA/454 polyplexes incorporating either gE2 -MTX or gE5 -MTX was observed and attributed to GE11-mediated targeting of EGFR overexpressing KB cells. GE11 modified gE2 -MTX or gE5 -MTX EG5 siRNA polyplexes illustrated the highest anti-tumoral activities compared to free MTX or nontargeted polyplexes. The His-containing gE2 -MTX or gE5 -MTX siRNA/1027 polyplexes showed increased tumor cell killing compared to the His-free analogous 1021 polyplexes. CONCLUSIONS: A new strategy for co-delivering negatively charged MTX and cytotoxic siRNA has been developed by utilizing sequence defined cationic lipo-oligomers. Mediated by the combined effect of antifolate MTX, antimitotic EG5 siRNA and EGFR targeting by GE11, superior tumor cell killing was obtained with GE11 gE2 -MTX or gE5 -MTX EG5 siRNA/454 polyplexes.


Assuntos
Metotrexato/farmacologia , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Metotrexato/administração & dosagem , Nanopartículas , Peptídeos/química , RNA Interferente Pequeno/administração & dosagem
8.
Macromol Biosci ; 17(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28371444

RESUMO

The conjugation of small molecule drugs to ligand containing carrier systems facilitates receptor targeted delivery. The folate receptor (FR) constitutes an ideal target for tumor selective therapy, being overexpressed on several tumor types. It can be targeted using the vitamin folic acid (FolA) or the structurally related drug methotrexate (MTX). Several sequence-defined oligoamides with mono- and multivalent FolA or MTX ligands and an additional thiol conjugation site are synthesized via solid-phase assisted synthesis. Their structure activity relationships are assessed in respect to dihydrofolate reductase inhibition, receptor mediated endocytosis, and cytotoxicity. Then, the tubulin-binding agent pretubulysin (PT), a highly potent drug exhibiting antitumoral, antiangiogenic, and antimetastatic properties, is conjugated via an activated mercaptane derivative to the set of FR-targeting oligoamides. In a combined PT/MTX cytotoxicity study in FR-overexpressing KB and L1210 cells, a 2-arm MTX-PT construct or the 4-arm analog displays the highest potency in the respective cell lines.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos , Ácido Fólico/metabolismo , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Amidas/síntese química , Amidas/química , Animais , Antineoplásicos/química , Transporte Biológico , Linhagem Celular Tumoral , Ácido Fólico/química , Expressão Gênica , Humanos , Células KB , Ligantes , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Metotrexato/química , Metotrexato/farmacologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Oligopeptídeos/química , Polietilenoglicóis/química , Tetra-Hidrofolato Desidrogenase/genética , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...