Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0250082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886626

RESUMO

Antimicrobials are included in commercial animal feed rations in many low- and middle-income countries (LMICs). We measured antimicrobial use (AMU) in commercial feed products consumed by 338 small-scale chicken flocks in the Mekong Delta of Vietnam, before a gradual nationwide ban on prophylactic use of antimicrobials (including in commercial feeds) to be introduced in the country over the coming five years. We inspected the labels of commercial feeds and calculated amounts of antimicrobial active ingredients (AAIs) given to flocks. We framed these results in the context of overall AMU in chicken production, and highlighted those products that did not comply with Government regulations. Thirty-five of 99 (35.3%) different antimicrobial-containing feed products included at least one AAI. Eight different AAIs (avilamycin, bacitracin, chlortetracycline, colistin, enramycin, flavomycin, oxytetracycline, virginamycin) belonging to five classes were identified. Brooding feeds contained antimicrobials the most (60.0%), followed by grower (40.9%) and finisher feeds (20.0%). Quantitatively, chlortetracycline was consumed most (42.2 mg/kg SEM ±0.34; 50.0% of total use), followed by enramycin (18.4 mg/kg SEM ±0.03, 21.8%), bacitracin (16.4 mg/kg SEM ±0.20, 19.4%) and colistin (6.40 mg/kg SEM ± 4.21;7.6%). Other antimicrobials consumed were virgianamycin, avilamycin, flavomycin and oxytetracycline (each ≤0.50 mg/kg). Antimicrobials in commercial feeds were more commonly given to flocks in the earlier part of the production cycle. A total of 10 (9.3%) products were not compliant with existing Vietnamese regulation (06/2016/TT-BNNPTNT) either because they included a non-authorised AAI (4), had AAIs over the permitted limits (4), or both (2). A number of commercial feed formulations examined included colistin (polymyxin E), a critically important antimicrobial of highest priority for human medicine. These results illustrate the challenges for effective implementation and enforcement of restrictions of antimicrobials in commercial feeds in LMICs. Results from this study should help encourage discussion about policies on medicated feeds in LMICs.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Anti-Infecciosos/análise , Doenças das Aves Domésticas/prevenção & controle , Animais , Anti-Infecciosos/uso terapêutico , Galinhas , Vietnã
3.
Prev Vet Med ; 165: 15-22, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851923

RESUMO

Raising chickens in small-scale flocks following all-in-all-out management is common in the Mekong Delta of Vietnam. These flocks represent an intermediate category between backyard and intensive (industrial) farming systems. However, little is known about the occurrence and burden of disease and/or mortality in such flocks, and their potential association with antimicrobial usage (AMU). We investigated mortality, disease and weekly antimicrobial use (AMU) in 124 cycles of meat chicken flocks raised in 88 farms in the Mekong Delta of Vietnam (with a median cycle duration of 18 weeks [inter-quartile range IQR 17-20]). We visited each farm 4 times per cycle to review data collected weekly by the farmers on clinical signs, mortality, and AMU. The overall probability of disease and AMU were 0.31 (95% CI 0.29-0.32) and 0.26 (95% CI 0.24-0.28), respectively. The average weekly incidence of mortality was 2.6 (95% CI 2.2-3.0) per 100 birds. Both the probabilities of a flock experiencing disease and mortality, as well as of using antimicrobials decreased with the flock's age. However, mortality peaked at the 5-10 week period. The only significant explanatory factors associated with presence of disease was the stage of production ≥5 weeks (protective) (OR ≤ 0.51). Factors independently associated with AMU (p < 0.05) were: (1) Number of chickens (log) (OR=1.46), (2) Stage of production ≥5 weeks (OR≤0.67) (protective), (3) Cao Lanh district (OR=2.23), (4) Density of veterinary drug shops at commune level (log) (OR=1.58), and (5) Disease in flocks (OR=1.80). Factors independently associated with overall increased weekly incidence of mortality (p < 0.05) were: (1) High level of education attainment (secondary education or higher) (Hazard rate Ratio [HR]=1.70), (2) number of chickens (log) (HR=1.39), and (3) Stage of production >5 weeks (HR≤2.14). In flocks reporting disease, AMU significantly reduced the incidence of mortality (HR=0.90). These results confirm an exceptionally high mortality in chicken flocks in the area, jeopardizing the profitability and sustainability of these small-scale farming systems. The data also suggest an association between nearby access to antimicrobials and AMU, and a high correlation of AMU over consecutive cycles. The atomized farming landscape of the Mekong Delta, the high incidence of disease and mortality, and the unrestricted and easy access to antimicrobials present major challenges to the implementation of policies aimed at AMU reductions.


Assuntos
Anti-Infecciosos/uso terapêutico , Doenças das Aves Domésticas/mortalidade , Adulto , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/estatística & dados numéricos , Animais , Galinhas , Fazendeiros/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças das Aves Domésticas/prevenção & controle , Fatores de Risco , Vietnã/epidemiologia
4.
Database (Oxford) ; 2014: bau008, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608033

RESUMO

Combining epidemiological information, genetic characterization and geomapping in the analysis of influenza can contribute to a better understanding and description of influenza epidemiology and ecology, including possible virus reassortment events. Furthermore, integration of information such as agroecological farming system characteristics can provide new knowledge on risk factors of influenza emergence and spread. Integrating viral characteristics into an animal disease information system is therefore expected to provide a unique tool to trace-and-track particular virus strains; generate clade distributions and spatiotemporal clusters; screen for distribution of viruses with specific molecular markers; identify potential risk factors; and analyze or map viral characteristics related to vaccines used for control and/or prevention. For this purpose, a genetic module was developed within EMPRES-i (FAO's global animal disease information system) linking epidemiological information from influenza events with virus characteristics and enabling combined analysis. An algorithm was developed to act as the interface between EMPRES-i disease event data and publicly available influenza virus sequences in OpenfluDB. This algorithm automatically computes potential links between outbreak event and sequences, which are subsequently manually validated by experts. Subsequently, other virus characteristics such as antiviral resistance can then be associated to outbreak data. To visualize such characteristics on a geographic map, shape files with virus characteristics to overlay on other EMPRES-i map layers (e.g. animal densities) can be generated. The genetic module allows export of associated epidemiological and sequence data for further analysis. FAO has made this tool available for scientists and policy makers. Contributions are expected from users to improve and validate the number of linked influenza events and isolate information as well as the quality of information. Possibilities to interconnect with other influenza sequence databases or to expand the genetic module to other viral diseases (e.g. foot and mouth disease) are being explored. Database OpenfluDB URL: http://openflu.vital-it.ch Database EMPRES-i URL: http://EMPRES-i.fao.org/.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Surtos de Doenças , Influenza Humana/epidemiologia , Influenza Humana/virologia , Orthomyxoviridae/genética , Humanos , Influenza Humana/genética , Orthomyxoviridae/isolamento & purificação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA