Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

2.
J Vis Exp ; (177)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34866621

RESUMO

Electron crystallography is a powerful tool for high-resolution structure determination. Macromolecules such as soluble or membrane proteins can be grown into highly ordered two-dimensional (2D) crystals under favorable conditions. The quality of the grown 2D crystals is crucial to the resolution of the final reconstruction via 2D image processing. Over the years, lipid monolayers have been used as a supporting layer to foster the 2D crystallization of peripheral membrane proteins as well as soluble proteins. This method can also be applied to 2D crystallization of integral membrane proteins but requires more extensive empirical investigation to determine detergent and dialysis conditions to promote partitioning to the monolayer. A lipid monolayer forms at the air-water interface such that the polar lipid head groups remain hydrated in the aqueous phase and the non-polar, acyl chains, tails partition into the air, breaking the surface tension and flattening the water surface. The charged nature or distinctive chemical moieties of the head groups provide affinity for proteins in solution, promoting binding for 2D array formation. A newly formed monolayer with the 2D array can be readily transfer into an electron microscope (EM) on a carbon-coated copper grid used to lift and support the crystalline array. In this work, we describe a lipid monolayer methodology for cryogenic electron microscopic (cryo-EM) imaging.


Assuntos
Elétrons , Diálise Renal , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Lipídeos/química , Proteínas de Membrana/química
3.
Sci Rep ; 10(1): 4163, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123280

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 17606, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772280

RESUMO

Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Sequência de Bases , Borrelia burgdorferi/patogenicidade , Cromatografia de Afinidade/métodos , Detergentes , Escherichia coli , Lipoproteínas/genética , Lipoproteínas/isolamento & purificação , Níquel , Plasmídeos/genética , Domínios Proteicos , Multimerização Proteica , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Secundária de Proteína , Sistemas de Translocação de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...