Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(25): 5109-5128, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32475115

RESUMO

Silicon is a known trace contaminant in diamond grown by chemical vapor deposition (CVD) methods. Deliberately Si-doped diamond is currently attracting great interest because of the attractive optical properties of the negatively charged silicon-vacancy (SiV-) defect. This work reports in-depth studies of microwave-activated H2 plasmas containing trace (10-100 ppm) amounts of SiH4, with and without a few % of CH4, operating at pressures and powers relevant for contemporary diamond CVD, using a combination of experiment (spatially resolved optical emission (OE) imaging) and two-dimensional plasma chemical modeling. Key features identified from analysis and modeling of the OE from electronically excited H, H2, Si, and SiH species in the dilute Si/H plasmas include the following: (i) fast H-shifting reactions ensure that Si atoms are the most abundant silicon-containing species throughout the entire reactor volume, (ii) the low ionization potentials of all SiHx (x ≤ 4) species and efficient ion conversion reactions ensure that even trace SiH4 additions cause a change in the dominant ions in the plasma volume (from H3+ to SiHx+), with consequences for electron-ion recombination rates and ambipolar diffusion coefficients, and (iii) the total silicon content in the reactor volume can be substantially perturbed by silicon deposition and H atom etching reactions at the reactor walls. The effects of adding trace amounts of SiH4 to a pre-existing C/H plasma are shown to be much less dramatic but include the following: (i) a Si substrate or fused silica components within the reactor are a ready (unintended) source of gas-phase Si-containing species, (ii) OE from electronically excited Si atoms should provide a reliable measure of the Si content in the hot plasma region, and (iii) Si atoms and/or SiC2 species are the most abundant gas-phase Si-containing species just above the growing diamond surface and thus the most likely carriers of the silicon incorporated into CVD diamond.

2.
J Phys Chem A ; 123(46): 9966-9977, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647649

RESUMO

We report a combined experimental/modeling study of optical emission from the A2Δ, B2Σ-, and C2Σ+ states of the CH radical in microwave (MW) activated CH4/H2 gas mixtures operating under a range of conditions relevant to the chemical vapor deposition of diamond. The experiment involves spatially and wavelength resolved imaging of the CH(C → X), CH(B → X), and CH(A → X) emissions at different total pressures, MW powers, C/H ratios in the source gas, and substrate diameters. The results are interpreted by extending an existing 2D (r, z) plasma model to include not just electron impact excitation but also chemiluminescent (CL) bimolecular reactions as sources of the observed CH emissions. Three possible CL reactions (of H atoms with CH2(a1A1) and CH2(X3B1) radicals and of C(1D) atoms with H2) are identified as plausible sources of electronically excited CH radicals (particularly of the lowest energy CH(A) state radicals). Each or all of these could contribute to the observed emissions and, collectively, are deduced to be the major source of the CH(A) emissions observed at the high temperatures (Tgas ∼ 3000 K) and pressures (75 ≤ p ≤ 275 Torr) explored in the present study. We suggest that such CL contributions are likely to be commonplace in such high pressure, high temperature plasma environments and highlight some of the risks associated with using relative emission intensities as an indicator of the electron characteristics in such plasmas.

3.
J Phys Chem A ; 122(42): 8286-8300, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30252472

RESUMO

A microwave (MW) activated hydrogen plasma operating under conditions relevant to contemporary diamond chemical vapor deposition reactors has been investigated using a combination of experiment and self-consistent 2-D modeling. The experimental study returns spatially and wavelength resolved optical emission spectra of the d → a (Fulcher), G → B, and e → a emissions of molecular hydrogen and of the Balmer-α emission of atomic hydrogen as functions of pressure, applied MW power, and substrate diameter. The modeling contains specific blocks devoted to calculating (i) the MW electromagnetic fields (using Maxwell's equations) self-consistently with (ii) the plasma chemistry and electron kinetics, (iii) heat and species transfer, and (iv) gas-surface interactions. Comparing the experimental and model outputs allows characterization of the dominant plasma (and plasma emission) generation mechanisms, identifies important coupling reactions between hydrogen atoms and molecules (e.g., the quenching of H( n > 2) atoms and electronically excited H2 molecules (H2*) by the alternate ground-state species and H3+ ion formation by the associative ionization reaction of H( n = 2) atoms with H2), and illustrates how spatially resolved H2* (and Hα) emission measurements offer a detailed and sensitive probe of the hyperthermal component of the electron energy distribution function.

4.
Chem Commun (Camb) ; 53(76): 10482-10495, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28840928

RESUMO

Diamond synthesis by chemical vapour deposition (CVD) from carbon-containing gas mixtures has by now long been an industrial reality, but commercial interest and investment into the technology has grown dramatically in the last several years. This Feature Article surveys recent advances in our understanding of the gas-phase chemistry of microwave-activated methane/hydrogen plasmas used for diamond CVD, including that of added boron-, nitrogen- and oxygen-containing dopant species. We conclude by considering some of the remaining challenges in this important area of contemporary materials science.

5.
J Phys Chem A ; 120(43): 8537-8549, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27718565

RESUMO

We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1-6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns, and [CN]ns of other reactive nitrogen-containing species by up to an order of magnitude. The ratio [N]ns/[CH3]ns scales proportionally with (but is 102-103 times smaller than) the ratio of the N2 to CH4 input mole fractions for the given values of p and P, but [N]ns/[CN]ns decreases (and thus the potential importance of CN in contributing to N-doped diamond growth increases) as p and P increase. Possible insights regarding the well-documented effects of trace N2 additions on the growth rates and morphologies of diamond films formed by CVD using MW-activated CH4/H2 gas mixtures are briefly considered.

7.
Sci Rep ; 6: 25609, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27170026

RESUMO

We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.

8.
J Phys Chem A ; 119(52): 12962-76, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26593853

RESUMO

We report a combined experimental/modeling study of microwave activated dilute N2/H2 and NH3/H2 plasmas as a precursor to diagnosis of the CH4/N2/H2 plasmas used for the chemical vapor deposition (CVD) of N-doped diamond. Absolute column densities of H(n = 2) atoms and NH(X(3)Σ(-), v = 0) radicals have been determined by cavity ring down spectroscopy, as a function of height (z) above a molybdenum substrate and of the plasma process conditions, i.e., total gas pressure p, input power P, and the nitrogen/hydrogen atom ratio in the source gas. Optical emission spectroscopy has been used to investigate variations in the relative number densities of H(n = 3) atoms, NH(A(3)Π) radicals, and N2(C(3)Πu) molecules as functions of the same process conditions. These experimental data are complemented by 2-D (r, z) coupled kinetic and transport modeling for the same process conditions, which consider variations in both the overall chemistry and plasma parameters, including the electron (Te) and gas (T) temperatures, the electron density (ne), and the plasma power density (Q). Comparisons between experiment and theory allow refinement of prior understanding of N/H plasma-chemical reactivity, and its variation with process conditions and with location within the CVD reactor, and serve to highlight the essential role of metastable N2(A(3)Σ(+)u) molecules (formed by electron impact excitation) and their hitherto underappreciated reactivity with H atoms, in converting N2 process gas into reactive NHx (x = 0-3) radical species.

9.
J Chem Phys ; 130(23): 234301, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19548721

RESUMO

The laser induced fluorescence spectrum of the A (1)A(")-X (1)A(') transition of CFBr is presented, with selected bands recorded at sub-Doppler resolution, allowing the rotational constants to be fully determined. Analysis of dispersed fluorescence spectra and the pattern of (79)Br/(81)Br isotope splittings indicate that the origin must be shifted from previous assignments in the literature to 23 271.0 cm(-1). This implies that only the lowest four vibrational levels in the A state have significant quantum yields for fluorescence, with all other levels strongly predissociated. Comparison with photofragment measurements implies that the A state is metastable, with a barrier to dissociation of approximately 1000 cm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA