Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Res Sq ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38077051

RESUMO

Background: Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods: We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/ß signaling pathways in modulating neuroinflammation and amyloid beta (Aß) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1ß and TNF-α induced IKK-α/ß towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aß load in the brains of APP/PS1 mice, we performed with a specific antibody Aß (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aß levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results: Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/ß-NF-κB p65 pathway, resulting in decreased IL-1ß and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1ß and TNF-α concentrations. In both males and females, Aß plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions: Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aß deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.

3.
Cells ; 12(8)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190020

RESUMO

Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aß and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aß and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Lipídeos
4.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37140138

RESUMO

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Microscopia Eletrônica de Varredura , Células Cultivadas
5.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
6.
Alzheimers Dement ; 19(2): 518-531, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35481667

RESUMO

INTRODUCTION: Late-onset Alzheimer's disease (LOAD) is a complex neurodegenerative disease characterized by multiple progressive stages, glucose metabolic dysregulation, Alzheimer's disease (AD) pathology, and inexorable cognitive decline. Discovery of metabolic profiles unique to sex, apolipoprotein E (APOE) genotype, and stage of disease progression could provide critical insights for personalized LOAD medicine. METHODS: Sex- and APOE-specific metabolic networks were constructed based on changes in 127 metabolites of 656 serum samples from the Alzheimer's Disease Neuroimaging Initiative cohort. RESULTS: Application of an advanced analytical platform identified metabolic drivers and signatures clustered with sex and/or APOE ɛ4, establishing patient-specific biomarkers predictive of disease state that significantly associated with cognitive function. Presence of the APOE ɛ4 shifts metabolic signatures to a phosphatidylcholine-focused profile overriding sex-specific differences in serum metabolites of AD patients. DISCUSSION: These findings provide an initial but critical step in developing a diagnostic platform for personalized medicine by integrating metabolomic profiling and cognitive assessments to identify targeted precision therapeutics for AD patient subgroups through computational network modeling.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Masculino , Feminino , Humanos , Doença de Alzheimer/patologia , Medicina de Precisão , Doenças Neurodegenerativas/complicações , Genótipo , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Redes e Vias Metabólicas
7.
Kidney360 ; 3(10): 1672-1682, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36514726

RESUMO

Background: Mitochondrial injury occurs in and underlies acute kidney injury (AKI) caused by ischemia-reperfusion and other forms of renal injury. However, to date, a comprehensive analysis of this issue has not been undertaken in heme protein-induced AKI (HP-AKI). We examined key aspects of mitochondrial function, expression of proteins relevant to mitochondrial quality control, and mitochondrial ultrastructure in HP-AKI, along with responses to heme in renal proximal tubule epithelial cells. Methods: The long-established murine glycerol model of HP-AKI was examined at 8 and 24 hours after HP-AKI. Indices of mitochondrial function (ATP and NAD+), expression of proteins relevant to mitochondrial dynamics, mitochondrial ultrastructure, and relevant gene/protein expression in heme-exposed renal proximal tubule epithelial cells in vitro were examined. Results: ATP and NAD+ content and the NAD+/NADH ratio were all reduced in HP-AKI. Expression of relevant proteins indicate that mitochondrial biogenesis (PGC-1α, NRF1, and TFAM) and fusion (MFN2) were impaired, as was expression of key proteins involved in the integrity of outer and inner mitochondrial membranes (VDAC, Tom20, and Tim23). Conversely, marked upregulation of proteins involved in mitochondrial fission (DRP1) occurred. Ultrastructural studies, including novel 3D imaging, indicate profound changes in mitochondrial structure, including mitochondrial fragmentation, mitochondrial swelling, and misshapen mitochondrial cristae; mitophagy was also observed. Exposure of renal proximal tubule epithelial cells to heme in vitro recapitulated suppression of PGC-1α (mitochondrial biogenesis) and upregulation of p-DRP1 (mitochondrial fission). Conclusions: Modern concepts pertaining to AKI apply to HP-AKI. This study validates the investigation of novel, clinically relevant therapies such as NAD+-boosting agents and mitoprotective agents in HP-AKI.


Assuntos
Injúria Renal Aguda , Hemeproteínas , Camundongos , Animais , Hemeproteínas/metabolismo , NAD/metabolismo , Injúria Renal Aguda/etiologia , Mitocôndrias/metabolismo , Heme/metabolismo , Trifosfato de Adenosina/metabolismo
8.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413951

RESUMO

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Assuntos
NAD , Saccharomyces cerevisiae , Animais , Camundongos , Humanos , Sobrevivência Celular , Autofagia , Morte Celular
9.
Brain Sci ; 12(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35624938

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual's unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery. Here, we review the development of various HiPSC-based models to study AD mechanisms and their application in drug discovery.

10.
Acta Pharm Sin B ; 12(2): 483-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256930

RESUMO

Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.

11.
Mitochondrion ; 58: 83-94, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610756

RESUMO

Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aß or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estudo de Associação Genômica Ampla , Linfócitos/metabolismo , Mitocôndrias/enzimologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Linfócitos/citologia , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único
12.
Commun Biol ; 4(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420340

RESUMO

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Pironas/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção , Estudo de Prova de Conceito , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
J Alzheimers Dis ; 79(1): 335-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33285637

RESUMO

BACKGROUND: Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer's disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown. OBJECTIVE: To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms. METHODS: CP2 was administered to male and female 3xTg-AD mice from 3.5-18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting. RESULTS: Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3ß (GSK3ß). CONCLUSION: CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.


Assuntos
Doença de Alzheimer/metabolismo , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Pironas/farmacologia , Sinapses/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , Animais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Fluordesoxiglucose F18 , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sinapses/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Nat Rev Drug Discov ; 19(9): 609-633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32709961

RESUMO

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Glicólise/fisiologia , Humanos , Fosforilação Oxidativa
15.
Front Pharmacol ; 11: 709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523530

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly afflicts the elderly population. Soluble oligomers (AßOs) has been implicated in AD pathogenesis: however, the molecular events underlying a role for Aß are not well understood. We studied the effects of AßOs on mitochondrial function and on key proteins that regulate mitochondrial dynamics and biogenesis in hippocampal neurons and PC-12 cells. We find that AßOs treatment caused a reduction in total Mfn1 after a 2 h exposure (42 ± 11%); while DRP1 increased at 1 and 2 h (205 ± 22% and 198 ± 27%, respectively), correlating to changes in mitochondrial morphology. We also observed that SIRT1 levels were reduced after acute and chronic AßOs treatment (68 ± 7% and 77 ± 6%, respectively); while PGC-1α levels were reduced with the same time treatments (68 ± 8% and 67 ± 7%, respectively). Interestingly, we found that chronic treatment with AßOs increased the levels of pSIRT1 (24 h: 157 ± 18%), and we observed changes in the PGC-1α and p-SIRT1 nucleus/cytosol ratio and SIRT1-PGC-1α interaction pattern after chronic exposure to AßOs. Our data suggest that AßOs induce important changes in the level and localization of mitochondrial proteins related with the loss of mitochondrial function that are mediated by a fast and sustained SIRT1/PGC-1α complex disruption promoting a "non-return point" to an irreversible synaptic failure and neuronal network disconnection.

16.
Nat Commun ; 11(1): 1148, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123170

RESUMO

Late-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Sangue/metabolismo , Metaboloma/genética , Idoso , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Tomografia por Emissão de Pósitrons , Fatores Sexuais
17.
Alzheimers Dement (N Y) ; 5: 652-660, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720366

RESUMO

INTRODUCTION: Development of efficacious therapeutic interventions for Alzheimer's disease (AD) is hampered by the lack of understanding early disease mechanisms, biomarkers, and models that mimic complex pathophysiology of human disease. METHODS: This article aims to assess to what extent peripheral cells recapitulate molecular mechanisms altered in the brain and could be used as translational models for the development of individualized medicine for AD. RESULTS: Multiple studies suggest that AD is a systemic disorder with an active crosstalk between brain and periphery where multiple pathways altered in the brain cells are also affected in plasma, cerebrospinal fluid, and other peripheral cells of AD patients. DISCUSSION: Additional studies to validate molecular mechanisms in peripheral cells using advanced system biology techniques and well-characterized cohorts of AD patients together with the development of standardized protocols should be considered to support the application of peripheral cells in AD research.

18.
Mol Cell Neurosci ; 98: 109-120, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31216425

RESUMO

Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.


Assuntos
Doença de Alzheimer/metabolismo , Transporte Axonal , Dinâmica Mitocondrial , Doença de Alzheimer/patologia , Animais , Humanos , Neurônios/metabolismo , Neurônios/patologia
19.
Metabolomics ; 15(6): 83, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123906

RESUMO

INTRODUCTION: Patient-derived skin fibroblasts offer a unique translational model to study molecular mechanisms of multiple human diseases. Metabolomics profiling allows to track changes in a broad range of metabolites and interconnected metabolic pathways that could inform on molecular mechanisms involved in disease development and progression, and on the efficacy of therapeutic interventions. Therefore, it is important to establish standardized protocols for metabolomics analysis in human skin fibroblasts for rigorous and reliable metabolic assessment. OBJECTIVES: We aimed to develop an optimized protocol for concurrent measure of the concentration of amino acids, acylcarnitines, and components of the tricarboxylic acid (TCA) cycle in human skin fibroblasts using gas (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS). METHODS: The suitability of four different methods of cell harvesting on the recovery of amino acids, acylcarnitines, and TCA cycle metabolites was established using GC/MS and LC/MS analytical platforms. For each method, metabolite stability was determined after 48 h, 2 weeks and 1 month of storage at - 80 °C. RESULTS: Harvesting cells in 80% methanol solution allowed the best recovery and preservation of metabolites. Storage of samples in 80% methanol up to 1  month at - 80 °C did not significantly impact metabolite concentrations. CONCLUSION: We developed a robust workflow for metabolomics analysis in human skin fibroblasts suitable for a high-throughput multiplatform analysis. This method allows a direct side-by-side comparison of metabolic changes in samples collected at different time that could be used for studies in large patient cohorts.


Assuntos
Fibroblastos/metabolismo , Metaboloma , Metabolômica/métodos , Aminoácidos/análise , Aminoácidos/metabolismo , Carnitina/análogos & derivados , Carnitina/análise , Carnitina/metabolismo , Células Cultivadas , Cromatografia Líquida/métodos , Ciclo do Ácido Cítrico , Fibroblastos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Pele/química , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...