Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121536, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909577

RESUMO

In this study, a series of BiTeX (X = Cl, Br, I) photocatalysts were successfully synthesized via a simple hydrothermal method. The synthesis process involved dissolving BiX3 and Te powder in toluene to identify the most efficient material for photocatalytic activity. The main objective of this approach is to facilitate the conversion of carbon dioxide into sustainable solar fuels, such as alcohols and hydrocarbons, offering an appealing solution to address environmental concerns and energy crises. The BiTeX photocatalysts demonstrated significant proficiency in converting CO2 into CH4, particularly BiTeCl exhibited a notable photocatalytic conversion rate of up to 0.51 µmolg-1h-1. The optimized BiTeX photocatalysts displayed a gradual and selective transition from CO2 to CH4, ultimately producing valuable hydrocarbons (C2+). Furthermore, owing to their ability to reduce CO2, these photocatalysts show promise as materials for mitigating environmental pollution.

2.
Heliyon ; 9(10): e20879, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876426

RESUMO

The extensive consumption of fossil fuels increases CO2 concentration in the atmosphere, resulting in serious global warming problems. Meanwhile, the problem of water contamination by organic substances is another significant global challenge. We have successfully synthesized ZnGa1.01Te2.13/g-C3N4 (ZGT/GCN) composites for the first time as effective photocatalysts for both pollutant degradation and CO2 reduction. ZGT/GCN composites were synthesized by a simple hydrothermal method. The prepared photocatalysts were characterized by XRD, SEM, TEM-EDS, DRS, BET, PL, and XPS. The ZGT/GCN heterojunction exhibited considerably enhanced photocatalytic activity in the degradation of crystal violet (CV) as well as in the photoreduction of CO2 when compared to pure ZGT and GCN semiconductors. The optimal rate constant for CV degradation was obtained with the ZGT-80%GCN composite (0.0442 h-1), which is higher than the constants obtained with individual ZGT and GCN by 7.75 and 1.63 times, respectively. Moreover, the CO2 reduction yields into CH4 by ZGT-80%GCN was 1.013 µmol/g in 72 h, which is 1.21 and 1.08 times larger than the yields obtained with ZGT and GCN. Scavenger and ESR tests were used to propose the photocatalytic mechanism of the ZGT/GCN composite as well as the active species in the CV degradation.

3.
J Pharm Biomed Anal ; 235: 115646, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595357

RESUMO

Elevated urinary cystine levels are closely associated with the development of cystine stone. Therefore, the ability to rapidly and efficiently determine urinary cystine levels is crucial for physicians to manage patients with cystinuria or those undergoing cystine medication. In this study, an amperometric method employing a commercial screen-printed silver electrode was successfully established. The resulting calibration curve indicated a detection limit of 0.65 mg/dL. Satisfactory recoveries ranging from 89% to 109% were obtained for urine samples. The method was also effective for the quality control analysis of cystine in pharmaceutical tablets. The recovery of cystine from pharmaceutical tablets ranged from 98% to 101% using the developed method. This method enables the rapid and accurate determination of cystine in both urine samples and pharmaceutical tablets and provides valuable information for clinical diagnosis and pharmaceutical quality control.


Assuntos
Cistina , Prata , Humanos , Urina , Eletrodos , Comprimidos
4.
RSC Adv ; 12(46): 29709-29718, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321077

RESUMO

In this paper, silver niobate (AgNbO3) material was synthesized by a solid-state reaction. AgNbO3 was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET) measurement. The photocatalytic activity of AgNbO3 was investigated in degradation of sulfamethoxazole (SMX) under visible light, which is a widely used antibiotic with significant threats towards health and aquatic organisms. Persulfate (PS) oxidant was found to improve the efficiency of the proposed photocatalytic removal of SMX by AgNbO3. The different operational parameters in the AgNbO3/PS/Vis system were investigated. The best photocatalytic performance was achieved with 0.5 g L-1 AgNbO3, 1.0 mM PS, and pH = 5.0 as the optimal conditions, achieving 98% of SMX degradation after 8 h of visible-light irradiation. Scavenger and electron spin resonance (ESR) experiments were carried out to identify the major reactive species in the SMX degradation and to propose the photocatalytic mechanism by the AgNbO3/PS/Vis system. The photodecomposition was found to be majorly caused by holes and ˙O2 - species, with ˙OH and SO4˙- radicals contributing to improve the photocatalytic process. The AgNbO3 catalyst was stable and reusable with efficient photocatalytic activity in three successive recycling experiments and its XRD patterns remained virtually unchanged. The reported process of PS activation by the AgNbO3 photocatalyst is promising for visible-light application in remediation of antibiotic-contaminated water.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159755

RESUMO

Glutathione functionalized magnetic 3D covalent organic frameworks combined with molecularly imprinted polymer (magnetic 3D COF-GSH MIPs) were developed for the selective recognition and separation of bovine serum albumin (BSA). Ultrasonication was used to prepare magnetic 3D COFs with high porosity (~1 nm) and a large surface area (373 m2 g-1). The magnetic 3D COF-GSH MIP nanoparticles had an imprinting factor of 4.79, absorption capacity of 429 mg g-1, magnetic susceptibility of 32 emu g-1, and five adsorption-desorption cycles of stability. The proposed method has the advantages of a shorter equilibrium absorption time (1.5 h), higher magnetic susceptibility (32 emu g-1), and larger imprinting factor (4.79) compared with those reported from other studies. The magnetic 3D COF-GSH MIPs used with BSA had selectivity factors of 3.68, 2.76, and 3.30 for lysozyme, ovalbumin, and cytochrome C, respectively. The successful recognition and separation of BSA in a real sample analysis verified the capability of the magnetic 3D COF-GSH MIP nanoparticles.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010016

RESUMO

Fluorescent carbon dots with blue, green, and red emissions were rapidly prepared from modified pine needles through microwave irradiation in a one-pot reaction. The fluorescence intensity and emission versatility for a carbon source were experimentally optimized. The reaction times were under 10 min and the reaction temperatures were lower than 220 °C. Potential applications of magnetic fluorescence-linked immunoassays of carcinoembryonic antigen (CEA) and tumor necrosis factor-alpha (TNF-α) were presented. The detection limits for CEA and TNF-α (3.1 and 2.8 pg mL-1, respectively) are lower than those presented in other reports, whereas the linear ranges for CEA and TNF-α (9 pg mL-1 to 18 ng mL-1 and 8.5 pg mL-1 to 17 ng mL-1, respectively) are wider than those presented in other reports. Magnetic immunoassays with fluorescent CDs prepared from pine needles can enable rapid, sensitive, and selective detections for biochemical analysis.

7.
Nanomaterials (Basel) ; 10(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906583

RESUMO

Novel bovine serum albumin (BSA)-gold nanoclusters with garlic extract modifications (mw_G-BSA-AuNCs) were prepared through microwave-assisted rapid synthesis. The modified nanoclusters were characterized and used for the simple and sensitive detection of Pb2+ ions. Both turn-on and turn-off methods were used and compared for Pb2+ ion detection. For Pb2+ ions, the preparation time for the modified nanoclusters was 10 min, and the detection time for the nanoclusters was 6 min. The modified nanoclusters were stable, and their fluorescence intensities changed by less than 10% in 60 days. The detection limit and linear range for the "off-on" method of mw_G-BSA-AuNCs for Pb2+ ion detection were 0.28 and 1-20 nM, respectively. The recoveries of the mw_G-BSA-AuNCs probe used for the detection of the Pb(II) ion in tap water ranged from 93.8% to 102.2%, with an average of 97.1%. The "off-on" method of mw_G-BSA-AuNCs can provide a lower detection limit, higher selectivity, and better recovery than the commonly used "turn-off" methods of mw_BSA-AuNCs for Pb2+ ion detection. The proposed method is superior to other methods proposed from 2018 to 2019 because it can provide a shorter preparation time and a lower detection limit with good selectivity. The microwave-assisted novel compound, mw_G-BSA-AuNCs, can be rapidly synthesized in a green manner and can provide a low detection limit, good selectivity, and a simple and fast reaction for Pb2+ ion detection.

8.
Biosens Bioelectron ; 90: 153-158, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27886602

RESUMO

This paper presents a method for simultaneous detection of two proteins by using multifunctional nanoparticles with a magnetic immunoassay in thin channels. Biofunctional magnetic graphene quantum dots (GQDs) combined with two biofunctional quantum dots (QDs) were used for simultaneously detecting two proteins. Magnetic GQDs enabled selective and quantitative nanoparticle deposition with blue emission. Biofunctional QDs confirmed the two protein detections with orange and green emissions. We used two model biomarkers [alpha-fetoprotein (AFP) and cancer antigen 125 (CA125)] to demonstrate the feasibility of the proposed method. The detection limits (0.06pg/mL AFP and 0.001U/mL CA125) and linear ranges (0.2pg/mL-0.68ng/mL AFP and 0.003-25U/mL CA125) of this method are the same as those of single protein detection within experimental errors. These detection limits are substantially lower and the linear ranges are considerably wider than those of enzyme-linked immunosorbent assay (ELISA) and other immunoassay methods. The differences between the proposed method and an ELISA method in AFP and CA125 measurements of serum samples were less than 12%. The proposed method demonstrates favorable detection of biomarkers with advantages of speed, sensitivity, selectivity, and throughput.


Assuntos
Técnicas Biossensoriais/instrumentação , Antígeno Ca-125/sangue , Grafite/química , Proteínas de Membrana/sangue , Pontos Quânticos/química , alfa-Fetoproteínas/análise , Antígeno Ca-125/análise , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Magnetismo/instrumentação , Imãs/química , Proteínas de Membrana/análise , Pontos Quânticos/ultraestrutura
9.
J Phys Chem B ; 120(42): 10932-10935, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27754671

RESUMO

We report a method that involves using atomic force microscopy to estimate molecular interaction forces for bioapplications. Experimental parameters, comprising the labeling concentrations of tips and substrates and the loading rates of tips, were optimized for estimating molecular interaction forces for three pairs of model molecules (IgG/anti-IgG, BSA/anti-BSA, streptavidin/biotin). The estimated molecular interaction forces of IgG/anti-IgG, BSA/anti-BSA, and streptavidin/biotin were 121 ± 3, 185 ± 4, and 241 ± 4 pN, respectively. The measured values were consistent and within the range of values reported in the literature. Estimation of molecular interaction forces in force-distance curves for bioapplication is still challenging. There are many potential bioapplications with further investigations. Providing additional screening reference for microsensing applications is one example. This method demonstrates favorable potential for effectively estimating molecular interaction forces for various applications of protein-ligand, antibody-antigen, ligand-receptor complexes, and other bioreactions. This method is also useful for studies of the structures and properties of molecular, cellular, and bacterial surfaces.

10.
Chem Cent J ; 9: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745512

RESUMO

BACKGROUND: The enzyme-linked immunosorbent assay (ELISA) has been used for diagnosing medical and plant pathologies. In addition, it is used for quality-control evaluations in various industries. The ELISA is the simplest method for obtaining excellent results; however, it is time consuming because the immunoreagents interact only on the contact surfaces. Antibody-labeled magnetic particles can be dispersed in a solution to yield a pseudohomogeneous reaction with antigens which improved the efficiency of immunoreaction, and can be easily separated from the unreactive substances by applying a magnetic force. We used a homemade magnetic microplate, functional magnetic particles (MPs) and enzyme-labeled secondary antibody to perform the sandwich ELISA successfully. RESULTS: Using antibody-labeled MPs enabled reducing the analysis time to one-third of that required in using a conventional ELISA. The secondary antibody conjugated with horseradish peroxidase (HRP) was affinity-bound to the analyte (IgG in this study). The calibration curve was established according to the measured absorbance of the 3, 3', 5, 5'-tetramethybezidine-HRP reaction products versus the concentrations of standard IgG. The linear range of IgG detection was 114 ng/mL-3.5 ng/mL. The limit of detection (LOD) of IgG was 3.4 ng/mL. The recovery and coefficient of variation were 100% (±7%) and 116% (±4%) for the spiked concentrations of 56.8 ng/mL and 14.2 ng/mL, respectively. CONCLUSION: Pseudohomogeneous reactions can be performed using functional MPs and a magnetic microplate. Using antibody-labeled MPs, the analysis time can be reduced to one-third of that required in using a conventional ELISA. The substrate-enzyme reaction products can be easily transferred to another microplate, and their absorbance can be measured without interference by light scattering caused by magnetic microbeads. This method demonstrates great potential for detecting other biomarkers and in biochemical applications. Graphical AbstractA magnetic ELISA with convenient magnetic microplate.

11.
Food Chem ; 158: 384, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24731358

Assuntos
Triazinas , Humanos
12.
Analyst ; 139(10): 2476-81, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24660217

RESUMO

We investigated the use of amperometric and chronoamperometric methods with a double mediator system and screen-printed electrodes (SPEs) for the electrochemical sensing of hepatocyte viability. Cell counts were determined based on measuring cellular respiration via interaction of electroactive redox mediators. The oxidation currents of chronoamperometric measurement were proportional to the concentrations of ferrocyanide which was produced via interaction of cellular respiration, succinate and ferricyanide. The integrated oxidation charges increased linearly with the density of the cultured primary rat hepatocytes over a range of 1 × 10(5) to 5 × 10(5) cells per well (slope = 1.98 (±0.08) µC per 10(5) cells; R(2) = 0.9969), and the detection limit was 7600 (±300) cells per well based on S/N = 3. Each density of cells was cultured in triple replicates and individual cell samples were evaluated. The results of the cytotoxic effect of the chronoamperometric method are comparable to those of the tetrazolium-based colorimetric assay. The chronoamperometric method with ferricyanide and succinate mediators is an efficient, alternative method for assessing the viability of primary hepatocytes which can be completed in 20 min. Succinate did not provide an efficient electron shuttle between cytosolic respiratory redox activity of cancer cells and extracellular ferricyanide, an effect that may be useful for distinguishing hepatocarcinoma cells from healthy hepatocytes.


Assuntos
Técnicas Eletroquímicas/métodos , Hepatócitos/citologia , Animais , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Limite de Detecção , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar
13.
Chem Cent J ; 6(1): 78, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22853321

RESUMO

BACKGROUND: Buckwheat flour and buckwheat sprouts possess antioxidant properties, and previous studies have reported on buckwheat flour displaying an inhibitory activity for angiotensin-I converting enzyme (ACE). Information is lacking on the bioactivity of other parts of the buckwheat, such as the seed hulls and plant stalks. This study investigates the ACE inhibitory activity and antioxidant activity of various parts of 2 types of buckwheat, namely, common buckwheat (Fagopyrum esculentum Moench) and tartary buckwheat (Fagopyrum tataricum Gaertn). RESULTS: The extract of common hulls extracted using 50% (v/v)-ethanol solvent presented a remarkable inhibitory activity. The value of IC50 is 30 µg ml-1. The extracts of both common and tartary hulls extracted using 50% (v/v)-ethanol solvent demonstrated an antioxidant activity that is superior to that of other extracts. CONCLUSION: This study determined that the ethanolic extract of the hulls of common buckwheat presented more favorable antioxidant and ACE inhibitory abilities. However, the correlation of antioxidant activity and ACE inhibitory activity for all 18 types of extracts is low. The ACE inhibitory activity could have been caused by a synergistic effect of flavonoids or from other unidentified components in the extracts. The ethanolic extract of common hulls demonstrated remarkable ACE inhibitory activity and is worthy of further animal study.

14.
Biosens Bioelectron ; 24(3): 485-8, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18640023

RESUMO

We investigate the feasibility of coupling the quartz crystal microbalance (QCM) with magnetic separation for on-line analysis. A flow cell was integrated with QCM and magnetic force for the analysis of magnetic and nonmagnetic samples. The resonant frequency change ((Delta)f) of QCM was related to the amount of deposited magnetic nanoparticles. This experiment demonstrates that QCM can be used as an on-line detector for magnetic separation. The QCM also gives a characteristic response of the binding between the streptavidin and biotin labeled on the magnetic nanoparticles. Biotin-labeled magnetic nanoparticles were flowed through a gold electrode of QCM to deposit as a matrix for selective capturing streptavidin. The resonant frequency change of QCM was proportional to the amounts of streptavidin captured by biotin. This technique can provide a simple, economic, and automatic method for on-line detection of biomarkers.


Assuntos
Separação Imunomagnética/métodos , Quartzo/química , Técnicas Biossensoriais/métodos , Biotina/química , Nanopartículas , Estreptavidina/química
15.
Biomagn Res Technol ; 4: 6, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17177988

RESUMO

BACKGROUND: Magnetic Split-flow thin (SPLITT) fractionation is a newly developed technique for separating magnetically susceptible particles. Particles with different field-induced velocities can be separated into two fractions by adjusting applied magnetic forces and flow-rates at inlets and outlets. METHODS: Magnetic particles, Dynabeads, were used to test this new approach of field-induced velocity for susceptibility determination using magnetic SF at different magnetic field intensities. Reference measurements of magnetic susceptibility were made using a superconducting quantum interference device (SQUID) magnetometer. Various ion-labeled red blood cells (RBC) were used to study susceptibility determination and throughput parameters for analytical and preparative applications of magnetic SPLITT fractionation (SF), respectively. Throughputs were studied at different sample concentrations, magnetic field intensities, and channel flow-rates. RESULTS: The susceptibilities of Dynabeads determined by SPLITT fractionation (SF) were consistent with those of reference measurement using a superconducting quantum interference device (SQUID) magnetometer. Determined susceptibilities of ion-labeled RBC were consistent within 9.6% variations at two magnetic intensities and different flow-rates. The determined susceptibilities differed by 10% from referenced measurements. The minimum difference in magnetic susceptibility required for complete separation was about 5.0 x 10(-6) [cgs]. Sample recoveries were higher than 92%. The throughput of magnetic SF was approximately 1.8 g/h using our experimental setup. CONCLUSION: Magnetic SF can provide simple and economical determination of particle susceptibility. This technique also has great potential for cell separation and related analysis. Continuous separations of ion-labeled RBC using magnetic SF were successful over 4 hours. The throughput was increased by 18 folds versus early study. Sample recoveries were 93.1 +/- 1.8% in triplicate experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...