Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838170

RESUMO

Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.


Assuntos
COVID-19 , Retículo Endoplasmático , Peptídeo Hidrolases , SARS-CoV-2 , Humanos , COVID-19/virologia , Retículo Endoplasmático/enzimologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ubiquitina/metabolismo , Células HeLa , Células HEK293 , Proteólise , Estabilidade Proteica , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
2.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35639484

RESUMO

Women of African ancestry suffer higher rates of breast cancer mortality compared with all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated E3 ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER+ and ER- tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer insights into our understanding of racial differences in breast cancer outcomes.


Assuntos
Neoplasias da Mama , Ubiquitina-Proteína Ligases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Estudos Retrospectivos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
3.
PLoS Biol ; 19(12): e3001474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879065

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação
4.
Pharmacol Rev ; 72(2): 380-413, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32107274

RESUMO

Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.


Assuntos
Engenharia de Proteínas/métodos , Ubiquitinas/metabolismo , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Ubiquitinação
5.
Nat Commun ; 11(1): 333, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949145

RESUMO

Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.


Assuntos
Perfilação da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Transcriptoma , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Pulmão/patologia , Melanócitos/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Segunda Neoplasia Primária/patologia , Fenótipo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Neoplasias Cutâneas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Melanoma Maligno Cutâneo
6.
FASEB J ; 33(1): 1235-1247, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113882

RESUMO

Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Catálise , Linhagem Celular , Humanos , Cristalino/citologia , Cristalino/metabolismo , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
7.
PLoS One ; 12(9): e0185089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926611

RESUMO

Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.


Assuntos
Sirolimo/análogos & derivados , Sirolimo/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Ribossômico 28S/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Solventes/química , Solventes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(26): E5158-E5166, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28584101

RESUMO

Botulism is characterized by flaccid paralysis, which can be caused by intoxication with any of the seven known serotypes of botulinum neurotoxin (BoNT), all of which disrupt synaptic transmission by endoproteolytic cleavage of SNARE proteins. BoNT serotype A (BoNT/A) has the most prolonged or persistent effects, which can last several months, and exerts its effects by specifically cleaving and inactivating SNAP25. A major factor contributing to the persistence of intoxication is the long half-life of the catalytic light chain, which remains enzymatically active months after entry into cells. Here we report that BoNT/A catalytic light chain binds to, and is a substrate for, the ubiquitin ligase HECTD2. However, the light chain evades proteasomal degradation by the dominant effect of a deubiquitinating enzyme, VCIP135/VCPIP1. This deubiquitinating enzyme binds BoNT/A light chain directly, with the two associating in cells through the C-terminal 77 amino acids of the light chain protease. The development of specific DUB inhibitors, together with inhibitors of BoNT/A proteolytic activity, may be useful for reducing the morbidity and public health costs associated with BoNT/A intoxication and could have potential biodefense implications.


Assuntos
Toxinas Botulínicas Tipo A/farmacocinética , Toxinas Botulínicas Tipo A/toxicidade , Endopeptidases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Endopeptidases/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cell Chem Biol ; 24(2): 231-242, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28163016

RESUMO

Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.


Assuntos
Ésteres/metabolismo , Compostos de Sulfidrila/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Acilação , Ésteres/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteômica , Compostos de Sulfidrila/química , Células Tumorais Cultivadas
10.
J Biol Chem ; 290(51): 30225-39, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26475854

RESUMO

RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Humanos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
PLoS One ; 9(4): e92290, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714645

RESUMO

Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis.


Assuntos
Príons/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Animais , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Príons/química , Proteólise , Ubiquitina/metabolismo , Ubiquitinação
12.
Mol Biol Cell ; 23(23): 4484-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23087214

RESUMO

The endoplasmic reticulum (ER)-resident enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the rate-limiting step in sterol production and is the therapeutic target of statins. Understanding HMG-CoA reductase regulation has tremendous implications for atherosclerosis. HMG-CoA reductase levels are regulated in response to sterols both transcriptionally, through a complex regulatory loop involving the ER Insig proteins, and posttranslationally, by Insig-dependent protein degradation by the ubiquitin-proteasome system. The ubiquitin ligase (E3) gp78 has been implicated in the sterol-regulated degradation of HMG-CoA reductase and Insig-1 through ER-associated degradation (ERAD). More recently, a second ERAD E3, TRC8, has also been reported to play a role in the sterol-accelerated degradation of HMG-CoA reductase. We interrogated this network in gp78(-/-) mouse embryonic fibroblasts and also assessed two fibroblast cell lines using RNA interference. Although we consistently observe involvement of gp78 in Insig-1 degradation, we find no substantive evidence to support roles for either gp78 or TRC8 in the robust sterol-accelerated degradation of HMG-CoA reductase. We discuss factors that might lead to such discrepant findings. Our results suggest a need for additional studies before definitive mechanistic conclusions are drawn that might set the stage for development of drugs to manipulate gp78 function in metabolic disorders.


Assuntos
Retículo Endoplasmático/enzimologia , Hidroximetilglutaril-CoA Redutases , Proteínas de Membrana , Receptores do Fator Autócrino de Motilidade , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores do Fator Autócrino de Motilidade/genética , Receptores do Fator Autócrino de Motilidade/metabolismo , Esteróis/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
13.
Dev Cell ; 23(3): 454-6, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22975320

RESUMO

Proteins are degraded from the ER by endoplasmic reticulum-associated degradation (ERAD). In a recent issue of Molecular Cell, Fleig et al. (2012) describe a role for a ubiquitin-binding rhomboid protease, RHBDL4, in degradation of select ERAD substrates. These findings and the significance of rhomboids and other intramembrane proteases are discussed.

14.
Mol Cell ; 47(4): 547-57, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22748923

RESUMO

Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.


Assuntos
Apoptose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 4/metabolismo , Mitocôndrias/enzimologia , Fosforilação , Proteólise , Proteínas Supressoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
15.
FEBS Lett ; 585(20): 3166-73, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21875585

RESUMO

The recent identification of metastasis suppressor genes, the products of which inhibit metastasis but not primary tumor growth, distinguishes oncogenic transformation and tumor suppression from a hallmark of malignancy, the ability of cancer cells to invade sites distant from the primary tumor. The metastasis suppressor CD82/KAI1 is a member of the tetraspanin superfamily of glycoproteins. CD82 suppresses metastasis by multiple mechanisms including inhibition of cell motility and invasion, promotion of cell polarity as well as induction of senescence and apoptosis in response to extracellular stimuli. A common feature of these diverse effects is CD82 regulation of membrane organization as well as protein trafficking and interactions, which affects cellular signaling and intercellular communication.


Assuntos
Apoptose , Comunicação Celular , Movimento Celular , Polaridade Celular , Proteína Kangai-1/metabolismo , Metástase Neoplásica , Transdução de Sinais , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Senescência Celular , Humanos , Proteína Kangai-1/genética , Invasividade Neoplásica , Transporte Proteico
16.
PLoS Biol ; 9(3): e1001038, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468305

RESUMO

Proteins are co-translationally inserted into the endoplasmic reticulum (ER) where they undergo maturation. Homeostasis in the ER requires a highly sensitive and selective means of quality control. This occurs through ER-associated degradation (ERAD).This complex ubiquitin-proteasome­mediated process involves ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3),lumenal and cytosolic chaperones, and other proteins, including the AAA ATPase p97 (VCP; Cdc48 in yeast). Probing of processes involving proteasomal degradation has generally depended on proteasome inhibitors or knockdown of specific E2s or E3s. In this issue of PLoS Biology, Ernst et al. demonstrate the utility of expressing the catalytic domain of a viral deubiquitylating enzyme to probe the ubiquitin system. Convincing evidence is provided that deubiquitylation is integral to dislocation of ERAD substrates from the ER membrane. The implications of this work for understanding ERAD and the potential of expressing deubiquitylating enzyme domains for studying ubiquitin-mediated processes are discussed.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Chaperonas Moleculares/metabolismo , Estresse Fisiológico , Ubiquitinação , Resposta a Proteínas não Dobradas/fisiologia
17.
Proc Natl Acad Sci U S A ; 107(38): 16554-9, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823219

RESUMO

Botulinum neurotoxins (BoNTs) are the most potent natural toxins known. The effects of BoNT serotype A (BoNT/A) can last several months, whereas the effects of BoNT serotype E (BoNT/E), which shares the same synaptic target, synaptosomal-associated protein 25 (SNAP25), last only several weeks. The long-lasting effects or persistence of BoNT/A, although desirable for therapeutic applications, presents a challenge for medical treatment of BoNT intoxication. Although the mechanisms for BoNT toxicity are well known, little is known about the mechanisms that govern the persistence of the toxins. We show that the recombinant catalytic light chain (LC) of BoNT/E is ubiquitylated and rapidly degraded in cells. In contrast, BoNT/A LC is considerably more stable. Differential susceptibility of the catalytic LCs to ubiquitin-dependent proteolysis therefore might explain the differential persistence of BoNT serotypes. In this regard we show that TRAF2, a RING finger protein implicated in ubiquitylation, selectively associates with BoNT/E LC and promotes its proteasomal degradation. Given these data, we asked whether BoNT/A LC could be targeted for rapid proteasomal degradation by redirecting it to characterized ubiquitin ligase domains. We describe chimeric SNAP25-based ubiquitin ligases that target BoNT/A LC for degradation, reducing its duration in a cellular model for toxin persistence.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Clostridium botulinum tipo A/fisiologia , Clostridium botulinum tipo A/patogenicidade , Clostridium botulinum tipo E/fisiologia , Clostridium botulinum tipo E/patogenicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A/genética , Linhagem Celular , Clostridium botulinum tipo A/genética , Clostridium botulinum tipo E/genética , Genes Bacterianos , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
18.
Genes Cancer ; 1(7): 764-778, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21331300

RESUMO

The endoplasmic reticulum (ER) is an essential organelle involved in many cellular functions including protein folding and secretion, lipid biosynthesis and calcium homeostasis. Proteins destined for the cell surface or for secretion are made in the ER, where they are folded and assembled into multi-subunit complexes. The ER plays a vital role in cellular protein quality control by extracting and degrading proteins that are not correctly folded or assembled into native complexes. This process, known as ER-associated degradation (ERAD), ensures that only properly folded and assembled proteins are transported to their final destinations. Besides its role in protein folding and transport in the secretory pathway, the ER regulates the biosynthesis of cholesterol and other membrane lipids. ERAD is an important means to ensure that levels of the responsible enzymes are appropriately maintained. The ER is also a major organelle for oxygen and nutrient sensing as cells adapt to their microenvironment. Stresses that disrupt ER function leads to accumulation of unfolded proteins in the ER, a condition known as ER stress. Cells adapt to ER stress by activating an integrated signal transduction pathway called the unfolded protein response (UPR) (1). The UPR represents a survival response by the cells to restore ER homeostasis. If ER stress persists, cells activate mechanisms that result in cell death. Chronic ER stress is increasingly being recognized as a factor in many human diseases such as diabetes, neurodegenerative disorders and cancer. In this review we discuss the roles of the UPR and ERAD in cancer and suggest directions for future research.

19.
Biochem Biophys Res Commun ; 390(3): 758-62, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19835843

RESUMO

There are an increasing number of ubiquitin ligases (E3s) implicated in endoplasmic reticulum (ER)-associated degradation (ERAD) in mammals. The two for which the greatest amount of information exists are the RING finger proteins gp78 and Hrd1, which are the structural orthologs of the yeast ERAD E3 Hrd1p. We now report that Hrd1, also known as synoviolin, targets gp78 for proteasomal degradation independent of the ubiquitin ligase activity of gp78, without evidence of a reciprocal effect. This degradation is observed in mouse embryonic fibroblasts lacking Hrd1, as well as with acute manipulation of Hrd1. The significance of this is underscored by the diminished level of a gp78-specific substrate, Insig-1, when Hrd1 expression is decreased and gp78 levels are consequently increased. These finding demonstrate a previously unappreciated level of complexity of the ubiquitin system in ERAD and have potentially important ramifications for processes where gp78 is implicated including regulation of lipid metabolism, metastasis, cystic fibrosis and neurodegenerative disorders.


Assuntos
Retículo Endoplasmático/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560420

RESUMO

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Assuntos
Receptores de Citocinas/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/metabolismo , Receptores de Citocinas/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...