Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36837978

RESUMO

In this paper, a blue fluorescent organic light-emitting diode (OLED) with a 1 cm2 emitting area was fabricated by a solution process. The ITO/spin MADN:13% UBD-07/TPBi/Al was used as the basic structure in which to add a hole-injection layer PEDOT:PSS and an electron-injection layer LiF, respectively. The device structure was optimized to obtain a longer lifetime. Firstly, the TPBi, which is an electron transport layer and a hole-blocking layer, was added to the structure to increase the electron transport rate. When the TPBi thickness was increased to 20 nm, the luminance was 221 cd/m2, and the efficiency was 0.52 cd/A at a voltage of 8 V. Since the addition of the hole-injection layer (HIL) increased the hole current but did not increase the electron current, the electron transport layer (ETL) Alq3 with the lowest unoccupied molecular orbital (LUMO) was added as stepped ETL to help the TPBi transport more electron current into the emitting layer. When the thickness of the TPBi/Alq3 was 10 nm/15 nm, the luminance reached 862 cd/m2, the efficiency was 1.29 cd/A, and the lifetime increased to 252 min. Subsequently, a hole-injection layer PEDOT:PSS with a thickness of 55 nm was added to make the ITO surface flatter and to reduce the probability of a short circuit caused by the spike effect. At this time, the luminance of 311 cd/m2, the efficiency of 0.64 cd/A, and the lifetime of 121 min were obtained. Following this, the thickness of the emitting layer was doubled to increase the recombination probability of the electrons and the holes. When the thickness of the emitting layer was 90 nm, and the thermal evaporation method was used, the efficiency was 3.23 cd/A at a voltage of 8V, and the lifetime was improved to 482 min. Furthermore, when the thickness of the hole-injection layer PEDOT:PSS was increased to 220 nm, the efficiency increased to 3.86 cd/A, and the lifetime was increased to 529 min. An infrared thermal image camera was employed to detect the temperature variation of the blue OLEDs. After the current was gradually increased, it was found that the heat accumulation of the device became more and more significant. When the driving current reached 50 mA, the device burnt out. It was found that the maximum temperature that the OLED device could withstand was approximately 58.83 degrees C at a current of 36.36 mA.

2.
Membranes (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832131

RESUMO

ZnO/ZnS nanocomposite-based nanostructures exhibit dual light and gas sensing capabilities. To further boost the light/dual sensing properties, gold nanoparticles (Au NPs) were incorporated into the core-shell structures. Multiple material characterizations revealed that Au NPs were successfully well spread and decorated on ZnO/ZnS nanostructures. Furthermore, our findings show that the addition of Au NPs could enhance both 365 nm UV light sensing and hydrogen gas sensing in terms of light/gas sensitivity and light/gas response time. We postulate that the optimization of gas/light dual sensing capability may result from the induced electric field and inhabitation of electron-hole recombination. Owing to their compact size, simple fabrication, and stable response, ZnO/ZnS/Au NPs-based light/gas dual sensors are promising for future extreme environmental monitoring.

3.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759804

RESUMO

Ultraviolet A light (UV-A, 320-400 nm), which is unblockable by sunscreen, requires careful detection for disease avoidance. In this study, we propose a novel photosensing device capable of detecting UV-A. Cancer-causing UV light can be simultaneously monitored with tiny rapid response sensors for a high carrier transition speed. In our research, a multifunctional ZnO/ZnS nanomaterial hybrid-sprinkled carbon nanotube (CNT) was created for the purpose of fabricating a multipurpose, semiconductorbased application. For our research, ZnO nanorods (NRs) were grown by using a facile hydrothermal method on SiO2 substrate, then vulcanized to form ZnO/ZnS coreshell nanorods, which were sprinkled with carbon nanotubes (CNTs). Results indicate that SiO2/ZnO/ZnS/CNT structures exhibited a stronger conducting current with and without light than those samples without CNTs. Multiple material characterizations of the nanostructures, including of atomic force microscopy (AFM) surface morphology evaluation, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicate that CNTs could be successfully spread on top of the ZnO/ZnS coreshell structures. Furthermore, chemical binding properties, material crystallinity, and optical properties were examined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and photoluminescence (PL). Owing to their compact size, simple fabrication, and low cost, ZnO/ZnS coreshell NRs/CNT/SiO2-based nanocomposites are promising for future industrial optoelectronic applications.

4.
J Nanosci Nanotechnol ; 8(10): 5232-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19198428

RESUMO

The derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC). The experimental parameters were studied carefully to obtain the optimum power conversion efficiency (PCE), including the solvent mixing ratio, spin-coating speed, annealing conditions for the active layer, etc. The OSC devices were packaged with glass and a newly developed UV-glue to improve the lifetime and PCE. Dichlorobenzene solvent has great effect upon the PCE. Changing the spin-coating speed and increasing the number of steps increased the PCE apparently to 1.4%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...