Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904863

RESUMO

Given the advantage of LoRaWAN private networks, multiple types of services have been implemented by users in one LoRaWAN system to realize various smart applications. With an increasing number of applications, LoRaWAN suffers from multi-service coexistence challenges due to limited channel resources, uncoordinated network configuration, and scalability issues. The most effective solution is establishing a reasonable resource allocation scheme. However, existing approaches are not applicable for LoRaWAN with multiple services with different criticalities. Therefore, we propose a priority-based resource allocation (PB-RA) scheme to coordinate multi-service networks. In this paper, LoRaWAN application services are classified into three main categories, including safety, control, and monitoring. Considering the different criticalities of these services, the proposed PB-RA scheme assigns spreading factors (SFs) to end devices on the basis of the highest priority parameter, which decreases the average packet loss rate (PLR) and improves throughput. Moreover, a harmonization index, namely HDex, based on IEEE 2668 standard is first defined to comprehensively and quantitively evaluate the coordination ability in terms of key quality of service (QoS) performance (i.e., PLR, latency and throughput). Furthermore, Genetic Algorithm (GA)-based optimization is formulated to obtain the optimal service criticality parameters which maximize the average HDex of the network and contribute to a larger capacity of end devices while maintaining the HDex threshold for each service. Simulations and experimental results show that the proposed PB-RA scheme can achieve the HDex score of 3 for each service type at 150 end devices, which improves the capacity by 50% compared to the conventional adaptive data rate (ADR) scheme.

2.
Sensors (Basel) ; 22(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36015818

RESUMO

In smart cities and smart industry, a Battery Management System (BMS) focuses on the intelligent supervision of the status (e.g., state of charge, temperature) of batteries (e.g., lithium battery, lead battery). Internet of Things (IoT) integration enhances the system's intelligence and convenience, making it a Smart BMS (SBMS). However, this also raises concerns regarding evaluating the SBMS in the wireless context in which these systems are installed. Considering the battery application, in particular, the SBMS will depend on several wireless communication characteristics, such as mobility, latency, fading, etc., necessitating a tailored evaluation strategy. This study proposes an IEEE P2668-Compatible SBMS Evaluation Strategy (SBMS-ES) to overcome this issue. The SBMS-ES is based on the IEEE P2668 worldwide standard, which aims to assess IoT solutions' maturity. It evaluates the characteristics of the wireless environment for SBMS while considering battery factors. The SBMS-ES scores the candidates under numerous scenarios with various characteristics. A final score between 0 and 5 is given to indicate the performance of the SBMS regarding the application demands. The disadvantages of the SBMS solution and the most desired candidate can be found with the evaluated score. SBMS-ES provides guidance to avoid potential risks and mitigates the issues posed by an inadequate or unsatisfactory SBMS solution. A case study is depicted for illustration.


Assuntos
Fontes de Energia Elétrica , Indústrias
3.
IEEE Trans Neural Netw Learn Syst ; 33(10): 5739-5750, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33861714

RESUMO

Network controllability robustness (CR) reflects how well a networked system can maintain its controllability against destructive attacks. Its measure is quantified by a sequence of values that record the remaining controllability of the network after a sequence of node-removal or edge-removal attacks. Traditionally, the CR is determined by attack simulations, which is computationally time-consuming or even infeasible. In this article, an improved method for predicting the network CR is developed based on machine learning using a group of convolutional neural networks (CNNs). In this scheme, a number of training data generated by simulations are used to train the group of CNNs for classification and prediction, respectively. Extensive experimental studies are carried out, which demonstrate that 1) the proposed method predicts more precisely than the classical single-CNN predictor; 2) the proposed CNN-based predictor provides a better predictive measure than the traditional spectral measures and network heterogeneity.

4.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858993

RESUMO

This paper introduces a novel model based on support vector machine with radial basis function kernel (RBF-SVM) using time-series features of zebrafish (Danio rerio) locomotion exposed to different electromagnetic fields (EMFs) to indicate the corresponding EMF exposure. A group of 14 adult zebrafish was randomly divided into two groups, 7 in each group; the fish of each group have the novel tank test under a sham or real magnetic exposure of 6.78 MHz and about 1 A/m. Their locomotion in the tests was videotaped to convert into the x, y coordinate time-series of the trajectories for reforming time-series matrices according to different time-series lengths. The time-series features of zebrafish locomotion were calculated by the comparative time-series analyzing framework highly comparative time-series analysis (HCTSA), and a limited number of the time-series features that were most relevant to the EMF exposure conditions were selected using the minimum redundancy maximum relevance (mRMR) algorithm for RBF-SVM classification training. Before this, ambient environmental parameters (AEPs) had little effect on the locomotion performance of zebrafish processed by the empirical method, which had been quantitatively verified by regression using another group of 14 adult zebrafish. The results have demonstrated that the purposed model is capable of accurately indicating different EMF exposures. All classification accuracies can be 100%, and the classification precision of several classifiers based on specific parameters and feature sets with specific dimensions can reach higher than 95%. The speculative reason for this result is that the specified EMF has affected the zebrafish neural aspect, which is then reflected in their behaviors. The outcomes of this study have provided a new indication model for EMF exposures and provided a reference for the investigation of the impact of EMF exposure.


Assuntos
Campos Eletromagnéticos , Locomoção , Máquina de Vetores de Suporte , Peixe-Zebra , Algoritmos , Animais
5.
Sensors (Basel) ; 19(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311084

RESUMO

Improperly grown trees may cause huge hazards to the environment and to humans, through e.g., climate change, soil erosion, etc. A proximity environmental feature-based tree health assessment (PTA) scheme is proposed to prevent these hazards by providing guidance for early warning methods of potential poor tree health. In PTA development, tree health is defined and evaluated based on proximity environmental features (PEFs). The PEF takes into consideration the seven surrounding ambient features that strongly impact tree health. The PEFs were measured by the deployed smart sensors surrounding trees. A database composed of tree health and relative PEFs was established for further analysis. An adaptive data identifying (ADI) algorithm is applied to exclude the influence of interference factors in the database. Finally, the radial basis function (RBF) neural network (NN), a machine leaning algorithm, has been identified as the appropriate tool with which to correlate tree health and PEFs to establish the PTA algorithm. One of the salient features of PTA is that the algorithm can evaluate, and thus monitor, tree health remotely and automatically from smart sensor data by taking advantage of the well-established internet of things (IoT) network and machine learning algorithm.


Assuntos
Saúde Ambiental , Internet das Coisas , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais , Humanos , Internet
6.
Sensors (Basel) ; 16(5)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27171090

RESUMO

Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.


Assuntos
Dirigir sob a Influência , Eletrocardiografia , Acidentes de Trânsito , Intoxicação Alcoólica , Condução de Veículo , Humanos
7.
Sensors (Basel) ; 15(7): 15033-66, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26131665

RESUMO

Wireless sensor networks, serving as an important interface between physical environments and computational systems, have been used extensively for supporting domain applications, where multiple-attribute sensory data are queried from the network continuously and periodically. Usually, certain sensory data may not vary significantly within a certain time duration for certain applications. In this setting, sensory data gathered at a certain time slot can be used for answering concurrent queries and may be reused for answering the forthcoming queries when the variation of these data is within a certain threshold. To address this challenge, a popularity-based cooperative caching mechanism is proposed in this article, where the popularity of sensory data is calculated according to the queries issued in recent time slots. This popularity reflects the possibility that sensory data are interested in the forthcoming queries. Generally, sensory data with the highest popularity are cached at the sink node, while sensory data that may not be interested in the forthcoming queries are cached in the head nodes of divided grid cells. Leveraging these cooperatively cached sensory data, queries are answered through composing these two-tier cached data. Experimental evaluation shows that this approach can reduce the network communication cost significantly and increase the network capability.

8.
Sensors (Basel) ; 15(1): 1245-51, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25587974

RESUMO

A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.

9.
Sensors (Basel) ; 15(1): 1312-20, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25587978

RESUMO

Each year, some 30 percent of global deaths are caused by cardiovascular diseases. This figure is worsening due to both the increasing elderly population and severe shortages of medical personnel. The development of a cardiovascular diseases classifier (CDC) for auto-diagnosis will help address solve the problem. Former CDCs did not achieve quick evaluation of cardiovascular diseases. In this letter, a new CDC to achieve speedy detection is investigated. This investigation incorporates the analytic hierarchy process (AHP)-based multiple criteria decision analysis (MCDA) to develop feature vectors using a Support Vector Machine. The MCDA facilitates the efficient assignment of appropriate weightings to potential patients, thus scaling down the number of features. Since the new CDC will only adopt the most meaningful features for discrimination between healthy persons versus cardiovascular disease patients, a speedy detection of cardiovascular diseases has been successfully implemented.


Assuntos
Doenças Cardiovasculares/classificação , Técnicas de Apoio para a Decisão , Algoritmos , Bases de Dados como Assunto , Eletrocardiografia , Humanos
10.
Sensors (Basel) ; 14(12): 22613-8, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25436658

RESUMO

A high accuracy localization technique using Long Term Evolution (LTE) based on a new and accurate multiple carrier noise model has been developed. In the noise consideration, the LTE multiple carriers phase noise has been incorporated so that a new and accurate noise model is achieved. An experiment was performed to characterize the phase noise of carriers at 2 GHz. The developed noise model was incorporated into LTE localization analysis in a high traffic area in Hong Kong to evaluate the accuracy of localization. The evaluation and analysis reveals that the new localization method achieves an improvement of about 10% accuracy comparing to existing widely adopted schemes.

11.
Sensors (Basel) ; 14(2): 2397-416, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24487623

RESUMO

This paper presents a ZigBee In-Patient Monitoring system embedded with a new ZigBee mobility management solution. The system enables ZigBee device mobility in a fixed ZigBee network. The usage, the architecture and the mobility framework are discussed in details in the paper. The evaluation shows that the new algorithm offers a good efficiency, resulting in a low management cost. In addition, the system can save lives by providing a panic button and can be used as a location tracking service. A case study focused on the Princes of Wales Hospital in Hong Kong is presented and findings are given. This investigation reveals that the developed mobile solutions offer promising value-added services for many potential ZigBee applications.

12.
Artigo em Inglês | MEDLINE | ID: mdl-16048184

RESUMO

A low cost, automatic tracking system for phase noise measurement has been implemented successfully. The tracking system is accomplished by applying a charge pump phase-locked loop as an external reference source to a digital spectrum analyzer. Measurement of a 2.5 GHz, free-running, voltage-controlled oscillator demonstrated the tracking accuracy, thus verifying the feasibility of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...