Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(28): 15463-15470, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31257373

RESUMO

Effective treatment of disorders of the central nervous system can often be achieved using bioactive molecules of similar moieties to those known to be tolerable. A better understanding of the solid-state characteristics of such molecules could thereby create new opportunities for research on pharmaceutical preparations and drug prescriptions, while information about their rich intramolecular dynamics may well add an important aspect in the field of in silico drug discovery. We have therefore investigated three different antipsychotic drugs: haloperidol (C21H23ClFNO2, HAL), aripiprazole (C23H27Cl2N3O2, APZ) and quetiapine hemifumarate (C21H25N3O2S·0.5C4H4O4, QTP) based on similarities either in their structures, hydrophobic and hydrophilic moieties, or in their modes of action, typical or atypical. Our aim was to test the structural and molecular stability of these three different antipsychotics. To this end, we compared the molecular vibrations observed by inelastic neutron spectroscopy of these systems with those from theoretical periodic calculations of the crystalline antipsychotics using the Vienna ab initio simulation package (VASP). While most of the observed features in the lattice region were reasonably well represented by the calculations, the overall spectra were relatively complex, and hence traditional assignment procedures for the approximately 600 normal modes in the unit cell were not possible. These results indicate that in the search for new drug candidates, not only analysis of the flexibility of the receptor, but also the dynamics of the active molecules play a role in improving the prediction of binding affinities.


Assuntos
Antipsicóticos/química , Conformação Molecular , Ligação de Hidrogênio
2.
J Phys Chem B ; 121(31): 7473-7483, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28699758

RESUMO

Little is presently known about the unique nanostructure of deep eutectic solvents (DES). The order of the liquid-solid phase transition is contended and whether DES-water mixtures are merely aqueous solutions, or have properties dominated by the eutectic pair, is unclear. Here, we unambiguously show the structure of choline chloride-malic acid (malicine) as a liquid, and also in solid and hydrated forms, using neutron total scattering on D/H isotope-substituted samples, and quasi-elastic neutron scattering (QENS). Data were refined using empirical potential structure refinement. We show evidence for a stoichiometric complex ion cluster in the disordered liquid, with strong choline-chloride bonding and a hydrogen bond donor (HBD) contribution. The 1:1 eutectic stoichiometry makes these ionic domains more well-defined, with less HBD clustering than seen previously for reline. There is minimal structural difference for the solidified material, demonstrating that this DES solidification is a glass transition rather than a first order phase change. QENS data support this by showing a gradual change in solvent dynamics rather than a step change. The DES structure is mostly retained upon hydration, with water acting both as a secondary smaller HBD at closer range to choline than malic acid, and forming transient wormlike aggregates. This new understanding of DES structure will aid understanding of the properties of these novel green solvents on the molecular length scale in chemical processes, as well as giving an insight into the apparent role of natural DESs in plant physiology.

3.
Mol Pharm ; 11(3): 1032-41, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24506163

RESUMO

This study focuses on the interplay of molecular flexibility and hydrogen bonding manifested in the monoclinic (form I) and orthorhombic (form II) polymorphs of paracetamol. By means of incoherent inelastic neutron scattering and density functional theory calculations, the relaxation processes related to the methyl side-group reorientation were analyzed in detail. Our computational study demonstrates the importance of considering quantum effects to explain how methyl reorientations and subtle conformational changes of the molecule are intertwined. Indeed, by analyzing the quasi elastic signal of the neutron data, we were able to show a unique and complex motional flexibility in form II, reflected by a coupling between the methyl and the phenyl reorientation. This is associated with a higher energy barrier of the methyl rotation and a lower Gibbs free energy when compared to form I. We put forward the idea that correlating solubility and molecular flexibility, through the relation between pKa and methyl rotation activation energy, might bring new insights to understanding and predicting drug bioavailability.


Assuntos
Acetaminofen/química , Conformação Molecular , Teoria Quântica , Ligação de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...