Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(8): 1718-1732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501891

RESUMO

Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re-assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep-learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography. RESEARCH HIGHLIGHTS: Introducing a rapid, multimodal machine-learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high-throughput quantitative cell biology.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Organelas , Organelas/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/métodos , Células HeLa , Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/citologia , Redes Neurais de Computação , Algoritmos , Microscopia Eletrônica de Volume
2.
Appl Bionics Biomech ; 2021: 7099510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840604

RESUMO

Due to the increasing number of COVID-19 cases, there is a remarkable demand for robots, especially in the clinical sector. SARS-CoV-2 mainly propagates due to close human interactions and contaminated surfaces, and hence, maintaining social distancing has become a mandatory preventive measure. This generates the need to treat patients with minimal doctor-patient interaction. Introducing robots in the healthcare sector protects the frontline healthcare workers from getting exposed to the coronavirus as well as decreases the need for medical personnel as robots can partially take over some medical roles. The aim of this paper is to highlight the emerging role of robotic applications in the healthcare sector and allied areas. To this end, a systematic review was conducted regarding the various robots that have been implemented worldwide during the COVID-19 pandemic to attenuate and contain the virus. The results obtained from this study reveal that the implementation of robotics into the healthcare field has a substantial effect in controlling the spread of SARS-CoV-2, as it blocks coronavirus propagation between patients and healthcare workers, along with other advantages such as disinfection or cleaning.

3.
Int J Inf Technol ; 13(6): 2191-2197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642649

RESUMO

Business and IT strategy alignment is a complex dynamic process in which organizations are in a position to enable extensive IT capabilities to achieve their business objectives. This interdependence is amplified by the COVID-19 crisis, which makes the integration of IT and business strategies more important than ever. This paper mainly aims to contribute to the understanding of strategic alignment from a practical perspective, as well as to demonstrate the applicability and robustness of the Strategic Alignment Model (SAM). Moreover, potential opportunities and risks associated with the strategic alignment of business and IT strategies are analysed. Findings are discussed after a qualitative analysis of 31 participants (semi-structured survey and interviews). Results indicated several difficulties affecting the strategic alignment implementation transcend the business and IT strategies like communication, corporate culture, governance, resource prioritization, and effective leadership. The study contends that there is a need to align and harmonize different agendas and interests within an organization and improve the understanding of the value of Strategic Alignment.

4.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577400

RESUMO

During the last two years, the COVID-19 pandemic continues to wreak havoc in many areas of the world, as the infection spreads through person-to-person contact. Transmission and prognosis, once infected, are potentially influenced by many factors, including indoor air pollution. Particulate Matter (PM) is a complex mixture of solid and/or liquid particles suspended in the air that can vary in size, shape, and composition and recent scientific work correlate this index with a considerable risk of COVID-19 infections. Early Warning Systems (EWS) and the Internet of Things (IoT) have given rise to the development of Low Power Wide Area Networks (LPWAN) based on sensors, which measure PM levels and monitor In-door Air pollution Quality (IAQ) in real-time. This article proposes an open-source platform architecture and presents the development of a Long Range (LoRa) based sensor network for IAQ and PM measurement. A few air quality sensors were tested, a network platform was implemented after simulating setup topologies, emphasizing feasible low-cost open platform architecture.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
5.
Front Public Health ; 8: 599550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330341

RESUMO

In this paper, a data mining model on a hybrid deep learning framework is designed to diagnose the medical conditions of patients infected with the coronavirus disease 2019 (COVID-19) virus. The hybrid deep learning model is designed as a combination of convolutional neural network (CNN) and recurrent neural network (RNN) and named as DeepSense method. It is designed as a series of layers to extract and classify the related features of COVID-19 infections from the lungs. The computerized tomography image is used as an input data, and hence, the classifier is designed to ease the process of classification on learning the multidimensional input data using the Expert Hidden layers. The validation of the model is conducted against the medical image datasets to predict the infections using deep learning classifiers. The results show that the DeepSense classifier offers accuracy in an improved manner than the conventional deep and machine learning classifiers. The proposed method is validated against three different datasets, where the training data are compared with 70%, 80%, and 90% training data. It specifically provides the quality of the diagnostic method adopted for the prediction of COVID-19 infections in a patient.


Assuntos
COVID-19/diagnóstico , COVID-19/fisiopatologia , Pulmão/diagnóstico por imagem , SARS-CoV-2/patogenicidade , Avaliação de Sintomas/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Sensibilidade e Especificidade
6.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906665

RESUMO

Monitoring what application or type of applications running on a computer or a cluster without violating the privacy of the users can be challenging, especially when we may not have operator access to these devices, or specialized software. Smart grids and Internet of things (IoT) devices can provide power consumption data of connected individual devices or groups. This research will attempt to provide insides on what applications are running based on the power consumption of the machines and clusters. It is therefore assumed that there is a correlation between electric power and what software application is running. Additionally, it is believed that it is possible to create power consumption profiles for various software applications and even normal and abnormal behavior (e.g., a virus). In order to achieve this, an experiment was organized for the purpose of collecting 48 h of continuous real power consumption data from two PCs that were part of a university computer lab. That included collecting data with a one-second sample period, during class as well as idle time from each machine and their cluster. During the second half of the recording period, one of the machines was infected with a custom-made virus, allowing comparison between power consumption data before and after infection. The data were analyzed using different approaches: descriptive analysis, F-Test of two samples of variance, two-way analysis of variance (ANOVA) and autoregressive integrated moving average (ARIMA). The results show that it is possible to detect what type of application is running and if an individual machine or its cluster are infected. Additionally, we can conclude if the lab is used or not, making this research an ideal management tool for administrators.

7.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069891

RESUMO

Olfaction can enhance the experience of music, films, computer games and virtual reality applications. However, this area is less explored than other areas such as computer graphics and audio. Most advanced olfactory displays are designed for a specific experiment, they are hard to modify and extend, expensive, and/or can deliver a very limited number of scents. Additionally, current-generation olfactory displays make no decisions on if and when a scent should be released. This paper proposes a low-cost, easy to build, powerful smart olfactory display, that can release up to 24 different aromas and allow control of the quantity of the released aroma. The display is capable of absorbing back the aroma, in an attempt to clean the air prior to releasing a new aroma. Additionally, the display includes a smart algorithm that will decide when to release certain aromas. The device controller application includes releasing scents based on a timer, text in English subtitles, or input from external software applications. This allows certain applications (such as games) to decide when to release a scent, making it ideal for gaming. The device also supports native connectivity with games developed using a game development asset, developed as part of this project. The project was evaluated by 15 subjects and it was proved to have high accuracy when the scents were released with 1.5 minutes' delay from each other.


Assuntos
Olfato , Jogos de Vídeo , Algoritmos , Humanos , Odorantes
8.
Sensors (Basel) ; 19(2)2019 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-30642131

RESUMO

Realization of navigation in virtual environments remains a challenge as it involves complex operating conditions. Decomposition of such complexity is attainable by fusion of sensors and machine learning techniques. Identifying the right combination of sensory information and the appropriate machine learning technique is a vital ingredient for translating physical actions to virtual movements. The contributions of our work include: (i) Synchronization of actions and movements using suitable multiple sensor units, and (ii) selection of the significant features and an appropriate algorithm to process them. This work proposes an innovative approach that allows users to move in virtual environments by simply moving their legs towards the desired direction. The necessary hardware includes only a smartphone that is strapped to the subjects' lower leg. Data from the gyroscope, accelerometer and campus sensors of the mobile device are transmitted to a PC where the movement is accurately identified using a combination of machine learning techniques. Once the desired movement is identified, the movement of the virtual avatar in the virtual environment is realized. After pre-processing the sensor data using the box plot outliers approach, it is observed that Artificial Neural Networks provided the highest movement identification accuracy of 84.2% on the training dataset and 84.1% on testing dataset.


Assuntos
Perna (Membro)/fisiologia , Aprendizado de Máquina , Smartphone , Interface Usuário-Computador , Algoritmos , Humanos , Movimento , Redes Neurais de Computação
9.
Artigo em Inglês | MEDLINE | ID: mdl-31905999

RESUMO

Algorithms for measuring semantic similarity between Gene Ontology (GO) terms has become a popular area of research in bioinformatics as it can help to detect functional associations between genes and potential impact to the health and well-being of humans, animals, and plants. While the focus of the research is on the design and improvement of GO semantic similarity algorithms, there is still a need for implementation of such algorithms before they can be used to solve actual biological problems. This can be challenging given that the potential users usually come from a biology background and they are not programmers. A number of implementations exist for some well-established algorithms but these implementations are not generic enough to support any algorithm other than the ones they are designed for. The aim of this paper is to shift the focus away from implementation, allowing researchers to focus on algorithm's design and execution rather than implementation. This is achieved by an implementation approach capable of understanding and executing user defined GO semantic similarity algorithms. Questions and answers were used for the definition of the user defined algorithm. Additionally, this approach understands any direct acyclic digraph in an Open Biomedical Ontologies (OBO)-like format and its annotations. On the other hand, software developers of similar applications can also benefit by using this as a template for their applications.


Assuntos
Algoritmos , Ontologia Genética , Semântica , Animais , Biologia Computacional , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA