Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 29(4): 622-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17849372

RESUMO

A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies.


Assuntos
Carboidratos/química , Álcoois/química , Amidas/química , Simulação por Computador , Ésteres/química , Éter/química , Metilação , Modelos Moleculares , Estrutura Molecular , Software , Vibração
2.
J Chem Theory Comput ; 3(5): 1721-1733, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25419191

RESUMO

The inclusion of zero-mass point charges around electronegative atoms, such as oxygen, within molecular mechanical force fields is known to improve hydrogen-bonding directionality. In parallel, inclusion of lone-pairs (LPs) in the TIP5P water model increased its ability to reproduce both gas-phase and condensed-phase properties over its non-LP predecessor, TIP3P. Currently, most biomolecular parameter sets compute partial atomic charges via fitting of the classical molecular electrostatic potential (MEP) to the quantum mechanical MEP. Application of this methodology to optimize lone-pair description is therefore consistent with the current approach to modeling electrostatics and is straightforward to implement. Here, we present an atom-type specific lone-pair model, which leads to the most optimal LP placement for each atom type, and, notably, results in reproduction of the lone-pair description present in TIP5P. Carbohydrates are rich in hydroxyl groups, and development of a lone-pair inclusive carbohydrate force field for use with a lone-pair containing water model, such as TIP5P, ensures the compatibility between these two models. Implementation of this lone-pair model improves the geometry and energetics for a series of hydrogen-bonded clusters and the properties of several small molecule crystals over the non-LP containing force field.

3.
J Comput Chem ; 26(10): 980-6, 2005 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15880781

RESUMO

We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, approximately 4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.


Assuntos
Anticorpos Catalíticos/química , Cocaína/química , Catálise , Hidrólise , Conformação Molecular , Estrutura Molecular , Termodinâmica
4.
J Am Chem Soc ; 126(27): 8421-5, 2004 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-15237998

RESUMO

Asparagine-linked glycosylation, the co-translational covalent attachment of carbohydrates to asparagine side chains, has a major effect on the folding, stability, and function of many proteins. The carbohydrate composition in mature glycoproteins is heterogeneous due to modification of the initial oligosaccharide by glycosidases and glycosyltransferases during the glycoprotein passage through the endoplasmic reticulum and Golgi apparatus. Despite the diversity of carbohydrate structures, the core beta-D-(GlcNAc)(2) remains conserved in all N-linked glycoproteins. Previously, results from our laboratory showed that the molecular composition of the core disaccharide has a critical and unique conformational effect on the peptide backbone. Herein, we employ a synergistic experimental and computational approach to study the effect of the stereochemistry of the carbohydrate--peptide linkage on glycopeptide structure. A glycopeptide derived from a hemagglutinin protein fragment was synthesized, with the carbohydrate attached to the peptide with an alpha-linked stereochemistry. Computational and biophysical analyses reveal that the conformations of the peptide and alpha- and beta-linked glycopeptides are uniquely influenced by the attached saccharide. The value of computational approaches for probing the influence of attached saccharides on polypeptide conformation is highlighted.


Assuntos
Glicopeptídeos/química , Oligossacarídeos/química , Peptídeos/química , Fenômenos Biofísicos , Biofísica , Configuração de Carboidratos , Glicosilação , Hemaglutininas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Soluções , Termodinâmica
5.
J Comput Chem ; 25(4): 573-86, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14735575

RESUMO

The hydration behavior of two model disaccharides, methyl-alpha-D-maltoside (1) and methyl-alpha-D-isomaltoside (2), has been investigated by a comparative 10 ns molecular dynamics study. The detailed hydration of the two disaccharides was described using three force fields especially developed for modeling of carbohydrates in explicit solvent. To validate the theoretical results the two compounds were synthesized and subjected to 500 MHz NMR spectroscopy, including pulsed field gradient diffusion measurements (1: 4.0. 10(-6) cm(2). s(-1); 2: 4.2. 10(-6) cm(2). s(-1)). In short, the older CHARMM-based force field exhibited a more structured carbohydrate-water interaction leading to better agreement with the diffusional properties of the two compounds, whereas especially the alpha-(1-->6) linkage and the primary hydroxyl groups were inaccurately modeled. In contrast, the new generation of the CHARMM-based force field (CSFF) and the most recent version of the AMBER-based force field (GLYCAM-2000a) exhibited less structured carbohydrate-water interactions with the result that the diffusional properties of the two disaccharides were underestimated, whereas the simulations of the alpha-(1-->6) linkage and the primary hydroxyl groups were significantly improved and in excellent agreement with homo- and heteronuclear coupling constants. The difference between the two classes of force field (more structured and less structured carbohydrate-water interaction) was underlined by calculation of the isotropic hydration as calculated by radial pair distributions. At one extreme, the radial O em leader O pair distribution function yielded a peak density of 2.3 times the bulk density in the first hydration shell when using the older CHARMM force field, whereas the maximum density observed in the GLYCAM force field was calculated to be 1.0, at the other extreme.


Assuntos
Glucanos/química , Modelos Moleculares , Água/química , Algoritmos , Simulação por Computador , Dissacarídeos/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estereoisomerismo , Termodinâmica
6.
J Phys Chem A ; 107(43): 9175-81, 2003 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16906231

RESUMO

Water-mediated interactions play a key role in carbohydrate-lectin binding, where the interactions involve a conserved water that is separated from the bulk solvent and present a bridge between the side chains of the protein and the carbohydrate ligand. To apply quantum mechanical methods to examine the role of conserved waters, we present an analysis in which the relevant carbohydrate atoms are modeled by methanol, and in which the protein is replaced by a limited number of amino acid side chains. Clusters containing a conserved water and a representative amino acid fragment were also examined to determine the influence of amino acid side chains on interaction energies. To quantify the differential binding energies of methanol versus water, quantum mechanical calculations were performed at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31+G(d) level in which either a methanol molecule was bound to the conserved water (liganded state) or in which a water molecule replaces the methanol (unliganded state). Not surprisingly, the binding of a water to clusters containing charged amino acid side chains was more favorable by 1.55 to 7.23 kcal/mol than that for the binding of a water to the corresponding pure water clusters. In contrast, the binding energy of water to clusters containing polar-uncharged amino acid side chains ranged from 4.35 kcal/mol less favorable to 4.72 kcal/mol more favorable than for binding to the analogous pure water clusters. The overall trend for the binding of methanol versus water, in any of the clusters, favored methanol by an average value of 1.05 kcal/mol. To extend these studies to a complex between a protein (Concanavalin A) and its carbohydrate ligand, a cluster was examined that contained the side chains of three key amino acids, namely asparagine, aspartate, and arginine, as well as a key water molecule, arranged as in the X-ray diffraction structure of Con A. Again, using methanol as a model for the endogenous carbohydrate ligand, energies of -5.94 kcal/mol and -5.70 kcal/mol were obtained for the binding of methanol and water, respectively, to the Con A-water cluster. The extent to which cooperativity enhanced the binding energies has been quantified in terms of nonadditive three-body contributions. In general, the binding of water or methanol to neutral dimers formed cooperative clusters; in contrast, the cooperativity in charged clusters depended on the overall geometry as well as the charge.

7.
J Biol Chem ; 277(8): 6615-21, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11714721

RESUMO

The shortage of organs for transplantation into human patients continues to be a driving force behind research into the use of tissues from non-human donors, particularly pig. The primary barrier to such xenotransplantation is the reaction between natural antibodies present in humans and Old World monkeys and the Gal alpha(1-3)Gal epitope (xenograft antigen, xenoantigen) found on the cell surfaces of the donor organ. This hyperacute immune response leads ultimately to graft rejection. Because of its high specificity for the xenograft antigen, isolectin 1-B(4) from Griffonia simplicifolia (GS-1-B(4)) has been used as an immunodiagnostic reagent. Furthermore, haptens that inhibit natural antibodies also inhibit GS-1-B(4) from binding to the xenoantigen. Here we report the first x-ray crystal structure of the xenograft antigen bound to a protein (GS-1-B(4)). The three-dimensional structure was determined from orthorhombic crystals at a resolution of 2.3 A. To probe the influence of binding on ligand properties, we report also the results of molecular dynamics (MD) simulations on this complex as well as on the free ligand. The MD simulations were performed with the AMBER force-field for proteins augmented with the GLYCAM parameters for glycosides and glycoproteins. The simulations were performed for up to 10 ns in the presence of explicit solvent. Through comparison with MD simulations performed for the free ligand, it has been determined that GS-1-B(4) recognizes the lowest energy conformation of the disaccharide. In addition, the x-ray and modeling data provide clear explanations for the reported specificities of the GS-1-B(4) lectin. It is anticipated that a further understanding of the interactions involving the xenograft antigen will help in the development of therapeutic agents for application in the prevention of hyperacute xenograft rejection.


Assuntos
Antígenos Heterófilos/química , Lectinas/química , Rosales/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Lectinas de Plantas , Conformação Proteica , Transplante Heterólogo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA