Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771543

RESUMO

Cold stress is a major factor influencing the geographical distribution of soybean growth and causes immense losses in productivity. Understanding the molecular mechanisms that the soybean has undergone to survive cold temperatures will have immense value in improving soybean cold tolerance. This review focuses on the molecular mechanisms involved in soybean response to cold. We summarized the recent studies on soybean cold-tolerant quantitative trait loci (QTLs), transcription factors, associated cold-regulated (COR) genes, and the regulatory pathways in response to cold stress. Cold-tolerant QTLs were found to be overlapped with the genomic region of maturity loci of E1, E3, E4, pubescence color locus of T, stem growth habit gene locus of Dt1, and leaf shape locus of Ln, indicating that pleiotropic loci may control multiple traits, including cold tolerance. The C-repeat responsive element binding factors (CBFs) are evolutionarily conserved across species. The expression of most GmDREB1s was upregulated by cold stress and overexpression of GmDREB1B;1 in soybean protoplast, and transgenic Arabidopsis plants can increase the expression of genes with the DRE core motif in their promoter regions under cold stress. Other soybean cold-responsive regulators, such as GmMYBJ1, GmNEK1, GmZF1, GmbZIP, GmTCF1a, SCOF-1 and so on, enhance cold tolerance by regulating the expression of COR genes in transgenic Arabidopsis. CBF-dependent and CBF-independent pathways are cross-talking and work together to activate cold stress gene expression. Even though it requires further dissection for precise understanding, the function of soybean cold-responsive transcription factors and associated COR genes studied in Arabidopsis shed light on the molecular mechanism of cold responses in soybeans and other crops. Furthermore, the findings may also provide practical applications for breeding cold-tolerant soybean varieties in high-latitude and high-altitude regions.

2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457271

RESUMO

To increase the potentiality of crop production for future food security, new technologies for plant breeding are required, including genome editing technology-being one of the most promising. Genome editing with the CRISPR/Cas system has attracted researchers in the last decade as a safer and easier tool for genome editing in a variety of living organisms including rice. Genome editing has transformed agriculture by reducing biotic and abiotic stresses and increasing yield. Recently, genome editing technologies have been developed quickly in order to avoid the challenges that genetically modified crops face. Developing transgenic-free edited plants without introducing foreign DNA has received regulatory approval in a number of countries. Several ongoing efforts from various countries are rapidly expanding to adopt the innovations. This review covers the mechanisms of CRISPR/Cas9, comparisons of CRISPR/Cas9 with other gene-editing technologies-including newly emerged Cas variants-and focuses on CRISPR/Cas9-targeted genes for rice crop improvement. We have further highlighted CRISPR/Cas9 vector construction model design and different bioinformatics tools for target site selection.


Assuntos
Edição de Genes , Oryza , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Genoma de Planta , Oryza/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética
3.
Front Fungal Biol ; 2: 765737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744090

RESUMO

Ginger diseases caused by fungal pathogens have become one of the most serious problems causing reduced production around the world. It has also caused a major problem among farmers in different parts of Ethiopia resulting in a huge decline in rhizome yield. However, the exact causative agents of this disease have not been identified in the state. Although there are few studies related to pathogenic fungus identification, molecular level identification of fungal pathogen was not done in the area. Therefore, this study was undertaken to isolate and characterized the fungal causative agent of ginger disease from the diseased plant and the soil samples collected around the diseased plant from Chilga district, Gondar, Ethiopia. Samples from infected ginger plants and the soil around the infected plant were collected. Culturing and purification of isolates were made using Potato Dextrose Agar supplemented with antibacterial agent chloramphenicol. The morphological characterization was done by structural identification of the isolates under the microscope using lactophenol cotton blue stains. Isolated fungi were cultured and molecular identification was done using an internal transcribed spacer (ITS) of ribosomal DNA (rDNA). A total of 15 fungal morphotypes including 11 Aspergillus spp. (73.3%), 2 Penicillium spp. (13.3%), and single uncultured fungus clone S23 were isolated from the samples representing all the plant organs and the soil. Aspergillus spp. (73.3%) was the most common and seems to be the major causative agent. To the best of our knowledge, this is the first report of ginger pathogenic fungi in Ethiopia identified using ITS rDNA molecular techniques. This study will lay foundation for the development of management strategies for fungal diseases infecting ginger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...