Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712359

RESUMO

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Assuntos
Artérias , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Perfusão
2.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912262

RESUMO

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Meios de Contraste , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Período Pré-Operatório
3.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866773

RESUMO

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Espectroscopia de Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética
4.
Ann Neurol ; 85(5): 644-652, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30864153

RESUMO

OBJECTIVE: Children with aromatic l-amino acid decarboxylase (AADC) deficiency suffer from severe motor dysfunction. Restoration of dopamine levels in the putamen by gene therapy has led to significant improvement in motor function. This study explored brain structure changes in patients. METHODS: Brain diffusion tensor imaging (DTI) was performed before and 12 months after gene therapy. Whole-brain tract-specific analysis was performed to assess white matter microstructural integrity. RESULTS: In the 8 patients (aged 1.67-8.42 years) enrolled in the study, gene therapy did not affect macroscopic structure. DTI before gene therapy revealed lower total mean fractional anisotropy (FA) values in patients than in the age-matched pretreatment controls (p = 0.017; median difference = -0.0136; 95% confidence interval [CI] [-0.0319, -0.0126]). After gene therapy, total mean FA increased (p = 0.012, median difference = 0.0211, 95% CI [0.0094, 0.0456]), and the values in the patients were not different from the age-matched posttreatment controls. Increase in total mean FA after gene therapy in patients was correlated with their increase in motor score (r = 0.846; p = 0.008), but was inversely correlated with their ages at the time of gene therapy (r = -0.754; p = 0.031). Corticospinal tracts, and the thalamic radiation and callosal fibers involving motor function, improved after gene therapy. INTERPRETATION: Improvement in the microstructural integrity of white matter tracts is associated with the improvement in motor function following gene therapy. Ann Neurol 2019;85:644-652.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/deficiência , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/tendências , Substância Branca/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...