Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(25): 259901, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802456

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.121.187204.

2.
Nat Commun ; 12(1): 4356, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272371

RESUMO

Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electronic entropy quenching. Here, we report thermoelectric generation caused by nuclear spins in a solid: nuclear-spin Seebeck effect. The sample is a magnetically ordered material MnCO3 having a large nuclear spin (I = 5/2) of 55Mn nuclei and strong hyperfine coupling, with a Pt contact. In the system, we observe low-temperature thermoelectric signals down to 100 mK due to nuclear-spin excitation. Our theoretical calculation in which interfacial Korringa process is taken into consideration quantitatively reproduces the results. The nuclear thermoelectric effect demonstrated here offers a way for exploring thermoelectric science and technologies at ultralow temperatures.

3.
Phys Rev Lett ; 125(8): 087701, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909808

RESUMO

We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.

4.
Phys Rev Lett ; 121(18): 187204, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444413

RESUMO

Prototypes of quantum impurities, such as NV and SiV color centers in diamond, have garnered much attention due to their minimally invasive and high-resolution magnetic field and thermal sensing. Here, we investigate quantum-impurity relaxometry as a method for probing collective excitations in magnetic insulators. We develop a general framework to relate the measurable quantum-impurity relaxation rates to the intrinsic dynamic properties of a magnetic system via the noise emitted by the latter. We suggest, in particular, that the quantum-impurity relaxometry is sensitive to dynamic phase transitions, such as magnon condensation, and can be deployed to detect signatures of the associated coherent spin dynamics, both in ferromagnetic and antiferromagnetic systems. Finally, we discuss prospects to nonintrusively probe spin-transport regimes and measure the associated transport coefficients in magnetic insulators.

5.
Nat Commun ; 9(1): 3692, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209251

RESUMO

One of the most intriguing and fundamental properties of topological systems is the correspondence between the conducting edge states and the gapped bulk spectrum. Here, we use a GaAs cleaved edge quantum wire to perform momentum-resolved spectroscopy of the quantum Hall edge states in a tunnel-coupled 2D electron gas. This reveals the momentum and position of the edge states with unprecedented precision and shows the evolution from very low magnetic fields all the way to high fields where depopulation occurs. We present consistent analytical and numerical models, inferring the edge states from the well-known bulk spectrum, finding excellent agreement with the experiment-thus providing direct evidence for the bulk to edge correspondence. In addition, we observe various features beyond the single-particle picture, such as Fermi level pinning, exchange-enhanced spin splitting and signatures of edge-state reconstruction.

6.
Phys Rev Lett ; 120(20): 207204, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864355

RESUMO

We investigate the current-induced switching of the Néel order in NiO(001)/Pt heterostructures, which is manifested electrically via the spin Hall magnetoresistance. Significant reversible changes in the longitudinal and transverse resistances are found at room temperature for a current threshold lying in the range of 10^{7} A/cm^{2}. The order-parameter switching is ascribed to the antiferromagnetic dynamics triggered by the (current-induced) antidamping torque, which orients the Néel order towards the direction of the writing current. This is in stark contrast to the case of antiferromagnets such as Mn_{2}Au and CuMnAs, where fieldlike torques induced by the Edelstein effect drive the Néel switching, therefore resulting in an orthogonal alignment between the Néel order and the writing current. Our findings can be readily generalized to other biaxial antiferromagnets, providing broad opportunities for all-electrical writing and readout in antiferromagnetic spintronics.

7.
Nat Commun ; 8(1): 117, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28744017

RESUMO

Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y3Fe5O12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y3Fe5O12 layer. This leads to excitation of auto-oscillations of the Y3Fe5O12 magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.Harvesting ohmic heat for signal processing is one of major challenges in modern electronics and spin caloritronics, but not yet well accomplished. Here the authors demonstrate a spin torque oscillator device driven by pure spin current arising from thermal gradient across an Y3Fe5O12/Pt interface.

8.
Phys Rev Lett ; 116(11): 117201, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035319

RESUMO

We investigate coupled spin and heat transport in easy-plane magnetic insulators. These materials display a continuous phase transition between normal and condensate states that is controlled by an external magnetic field. Using hydrodynamic equations supplemented by Gross-Pitaevski phenomenology and magnetoelectric circuit theory, we derive a two-fluid model to describe the dynamics of thermal and condensed magnons, and the appropriate boundary conditions in a hybrid normal-metal-magnetic-insulator-normal-metal heterostructure. We discuss how the emergent spin superfluidity can be experimentally probed via a spin Seebeck effect measurement.

9.
Phys Rev Lett ; 100(6): 067602, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18352517

RESUMO

We report the electrical detection of magnetization dynamics in an Al/AlOx/Ni80Fe20/Cu tunnel junction, where a Ni80Fe20 ferromagnetic layer is brought into precession under ferromagnetic resonance conditions. The dc voltage generated across the junction by the precessing ferromagnet is enhanced about an order of magnitude compared to the voltage signal observed when the contacts in this type of multilayered structure are Ohmic. We discuss the relation of this phenomenon to magnetic spin pumping and speculate on other possible underlying mechanisms responsible for the enhanced electrical signal.

10.
Phys Rev Lett ; 97(26): 266602, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280445

RESUMO

We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels inside the tunnel barrier to qualitatively explain the observations.

11.
Science ; 308(5718): 88-92, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15802599

RESUMO

We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained by tunneling between two parallel wires in an GaAs/AlGaAs heterostructure while varying electron density. We observed two spin modes and one charge mode of the coupled wires and mapped the dispersion velocities of the modes down to a critical density, at which spontaneous localization was observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that was not observed. The measured spin velocity was smaller than theoretically predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...