Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107797

RESUMO

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Cerebelares , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inativação de Genes/métodos
2.
Genome Med ; 16(1): 82, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886809

RESUMO

BACKGROUND: Genome-wide functional screening using the CRISPR-Cas9 system is a powerful tool to uncover tumor-specific and common genetic dependencies across cancer cell lines. Current CRISPR-Cas9 knockout libraries, however, primarily target protein-coding genes. This limits functional genomics-based investigations of miRNA function. METHODS: We designed a novel CRISPR-Cas9 knockout library (lentiG-miR) of 8107 distinct sgRNAs targeting a total of 1769 human miRNAs and benchmarked its single guide RNA (sgRNA) composition, predicted on- and off-target activity, and screening performance against previous libraries. Using a total of 45 human cancer cell lines, representing 16 different tumor entities, we performed negative selection screens to identify miRNA fitness genes. Fitness miRNAs in each cell line were scored using a combination of supervised and unsupervised essentiality classifiers. Common essential miRNAs across distinct cancer cell lines were determined using the 90th percentile method. For subsequent validation, we performed knockout experiments for selected common essential miRNAs in distinct cancer cell lines and gene expression profiling. RESULTS: We found significantly lower off-target activity for protein-coding genes and a higher miRNA gene coverage for lentiG-miR as compared to previously described miRNA-targeting libraries, while preserving high on-target activity. A minor fraction of miRNAs displayed robust depletion of targeting sgRNAs, and we observed a high level of consistency between redundant sgRNAs targeting the same miRNA gene. Across 45 human cancer cell lines, only 217 (12%) of all targeted human miRNAs scored as a fitness gene in at least one model, and fitness effects for most miRNAs were confined to small subsets of cell lines. In contrast, we identified 49 common essential miRNAs with a homogenous fitness profile across the vast majority of all cell lines. Transcriptional profiling verified highly consistent gene expression changes in response to knockout of individual common essential miRNAs across a diverse set of cancer cell lines. CONCLUSIONS: Our study presents a miRNA-targeting CRISPR-Cas9 knockout library with high gene coverage and optimized on- and off-target activities. Taking advantage of the lentiG-miR library, we define a catalogue of miRNA fitness genes in human cancer cell lines, providing the foundation for further investigation of miRNAs in human cancer.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Neoplasias/genética , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Genes Essenciais
3.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475864

RESUMO

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Assuntos
Glioma , Peixe-Zebra , Camundongos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA