Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(33): 11529-11544, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566557

RESUMO

Polysaccharides and their derivatives are commonly used in pharmaceutical and agricultural formulations as rheology modifiers. Their performance is related to their conformation in solution, which in turn is affected by other ingredients present in the formulation. This study focuses on modulating the conformation of relatively rigid cellulose chains in aqueous solutions. In particular, we have investigated the nonionic cellulose derivative ethyl(hydroxyethyl)cellulose (EHEC) in water in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and/or ethanol acting as modulating agents. We have used small angle neutron scattering (SANS) with contrast variation to determine the EHEC chain conformation in the presence of (but not masked by) ethanol and SDS. In dilute and semidilute aqueous solutions, EHEC exhibits worm-like chain conformation due to the rigid cellulose backbone. Addition of ethanol does not impact the polymer conformation to a great extent. Addition of SDS alters the EHEC chain conformation, resulting in polyelectrolyte-like scattering behavior due to repulsive interactions between bound charged micelles which show similar structure as the free SDS micelles in solution (in the absence of polymers). Ethanol affects the polymer + surfactant system primarily by acting on the surfactant (bound on polymer) which, in turn, affects the polymer conformation. At higher ethanol concentrations (20 wt %), EHEC regains the worm-like chain conformation because of the detachment of the bound SDS micelles. To the best of our knowledge, this is the only study providing details on chain conformation of the rigid polymer EHEC in dilute or semidilute aqueous solutions in the presence of surfactant and alcohol and one of very few papers utilizing SANS for the characterization of polymer + surfactant + water + alcohol interactions. Such fundamental understanding of interactions and structure in multicomponent mixtures supports the design of industrial formulations.

2.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297911

RESUMO

Multilayer thin film assembly by the layer-by-layer (LbL) technique offers an inexpensive and versatile route for the synthesis of functional nanomaterials. In the case of polymer-clay systems, however, the technique faces the challenges of low clay loading and lack of tunability of the film characteristics. This is addressed in the present work that achieves exponential growth in clay-containing polyelectrolyte films having high clay loading and tailored properties. Our approach involves the incorporation of a weak polyelectrolyte and a clay with relatively high charge density and small particle size. The system of investigation comprises poly(diallyldimethylammonium chloride) (PDDA) as the polycation and laponite clay and poly(acrylic acid) (PAA) or poly(sodium-4-styrene sulfonate) (PSS) as polyanions that are used alternately to create multilayers. Successful high clay loading and exponential growth were achieved by two different approaches of polyanion incorporation in the multilayers. A progressive increase in the degree of ionization of PAA was shown to contribute to the exponential growth. Our findings also include novel pathways to manipulate thickness, surface topography, and clay content. The strategy presented here can lead to novel approaches to fabricate tailor-made nanomaterials for distinct applications.

3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232408

RESUMO

Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications.


Assuntos
Ramnose , Cloreto de Sódio , Adsorção , Ácidos Graxos , Glicolipídeos , Ouro , Hidrocarbonetos , Tensoativos , Água
4.
J Hazard Mater ; 428: 128137, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016121

RESUMO

2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, a.k.a. "GenX", is a surfactant introduced as a safer alternative to replace perfluorooctanoate (PFOA) in the manufacturing of fluorinated polymers, however, GenX is shown to cause adverse health effects similar to, or even worse than, those of the legacy PFOA. With an overarching goal to understand the behavior of GenX molecules in aqueous media, we report here on GenX micelle formation and structure in aqueous solutions, on the basis of results obtained from a combination of experimental techniques such as surface tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles. The critical micelle concentration (CMC) of GenX ammonium salt in water is 175 mM. GenX forms small micelles with association number 6-8 and 10 Å radius. GenX molecules prefer to align along the micelle surface, and the ether oxygen of GenX has very little interaction with and exposure to water. Information on the surfactant and interfacial properties of GenX is crucial, since such properties are manifestations of interactions between GenX molecules and between GenX and water molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport in the aqueous environment, its interactions with various biomolecules, and its binding to adsorbent materials.


Assuntos
Poluentes Químicos da Água , Água , Micelas , Tensão Superficial , Tensoativos , Poluentes Químicos da Água/análise
5.
J Colloid Interface Sci ; 609: 456-468, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34815085

RESUMO

HYPOTHESIS: Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS: The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS: The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.


Assuntos
Micelas , Tensoativos , Polímeros , Espalhamento a Baixo Ângulo , Água
6.
Langmuir ; 37(17): 5339-5347, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885307

RESUMO

The self-assembly of surfactants in aqueous solution can be modulated by the presence of additives including urea, which is a well-known protein denaturant and also present in physiological fluids and agricultural runoff. This study addresses the effects of urea on the structure of micelles formed in water by the fluorinated surfactant perfluoro-n-octanoic acid ammonium salt (PFOA). Analysis of small-angle neutron scattering (SANS) experiments and atomistic molecular dynamics (MD) simulations provide consensus strong evidence for the direct mechanism of urea action on micellization: urea helps solvate the hydrophobic micelle core by localizing at the surface of the core in the place of some water molecules. Consequently, urea decreases electrostatic interactions at the micelle shell, changes the micelle shape from prolate ellipsoid to sphere, and decreases the number of surfactant molecules associating in a micelle. These findings inform the interactions and behavior of surface active per- and polyfluoroalkyl substances (PFAS) released in the aqueous environment and biota.

7.
Phys Chem Chem Phys ; 23(16): 10029-10039, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870993

RESUMO

Surface active per- and polyfluoroalkyl substances (PFAS) released in the environment generate great concern in the US and worldwide. The sequestration of PFAS amphiphiles from aqueous media can be limited by their strong tendency to form micelles that plug the pores in the adsorbent material, rendering most of the active surface inaccessible. A joint experimental and simulation approach has been used to investigate the structure of perfluorooctanoate ammonium (PFOA) micelles in aqueous solutions, focusing on the understanding of ethanol addition on PFOA micelle formation and structure. Structurally compact and slightly ellipsoidal in shape, PFOA micelles in pure water become more diffuse with increasing ethanol content, and break into smaller PFOA clusters in aqueous solutions with high ethanol concentration. A transition from a co-surfactant to a co-solvent behavior with the increase of ethanol concentration has been observed by both experiments and simulations, while the latter also provide insight on how to achieve co-solvent conditions with other additives. An improved understanding of how to modulate PFAS surfactant self-assembly in water can inform the fate and transport of PFAS in the environment and the PFAS sequestration from aqueous media.

8.
Adv Colloid Interface Sci ; 275: 102061, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31767119

RESUMO

Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.


Assuntos
Produtos Biológicos/química , Tensoativos/química , Produtos Biológicos/síntese química , Físico-Química , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/síntese química
9.
Angew Chem Int Ed Engl ; 58(31): 10572-10576, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31141618

RESUMO

Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th-generation Hawker-type dendron with two azide groups was synthesized, followed by a step-growth azide-alkyne "click" reaction between the 4th-generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step-growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase-segregated nanorods in water.

10.
Biomacromolecules ; 19(2): 640-651, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29394046

RESUMO

With the aim of informing the selection of biomass pretreatment options and to assist in interpreting experimental results from different biomass/solvent combinations, this study addresses the impact of crystallinity and size on the kinetics of semicrystalline cellulose fiber swelling and dissolution. To this end, a newly developed phenomenological model is utilized that accounts for the role of decrystallization and disentanglement as two rate-determinant steps in the cellulose dissolution process. Although fibers with lower crystallinity swell more and faster, the degree of crystallinity does not affect the dissolution rate. Fibers of smaller diameter swell more and become amorphous faster. When decrystallization is important, the solubility of thinner fibers increases more with a reduction in the crystallinity compared to the diameter. However, when the dissolution is controlled by chain disentanglement, or in the case of dissolution of fibers having larger diameters, milling the fibers to reduce the particle size could increase the solubility.


Assuntos
Celulose/química , Modelos Moleculares , Tamanho da Partícula
11.
Adv Colloid Interface Sci ; 244: 71-89, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28499602

RESUMO

Polyelectrolyte complexes (PECs) are three-dimensional macromolecular structures formed by association of oppositely charged polyelectrolytes in solution. Polyelectrolyte multilayers (PEMs) can be considered a special case of PECs prepared by layer-by-layer (LbL) assembly that involves sequential deposition of molecular-thick polyelectrolyte layers with nanoscale control over the size, shape, composition and internal organization. Although many functional PEMs with novel physical and chemical characteristics have been developed, the current practical applications of PEMs are limited to those that require only a few bilayers and are relatively easy to prepare. The viability of such engineered materials can be realized only after overcoming the scientific and engineering challenges of understanding the kinetics and transport phenomena involved in the multilayer growth and the factors governing their final structure, composition, and response to external stimuli. There is a great need to model PEMs and to connect PEM behavior with the characteristics of the PEC counterparts to allow for prediction of performance and better design of multilayered materials. This review focuses on the relationship between PEMs and PECs. The constitutive interactions, the thermodynamics and kinetics of polyelectrolyte complexation and PEM formation, PEC phase behavior, PEM growth, the internal structure and stability in PEMs and PECs, and their response to external stimuli are presented. Knowledge of such interactions and behavior can guide rapid fabrication of PEMs and can aid their applications as nanocomposites, coatings, nano-sized reactors, capsules, drug delivery systems, and in electrochemical and sensing devices. The challenges and opportunities in future research directions are also discussed.

12.
Bioresour Technol ; 228: 330-338, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28086174

RESUMO

A necessary step in the processing of biomass is the pretreatment and dissolution of cellulose. A good solvent for cellulose involves high diffusivity, aggressiveness in decrystallization, and capability of disassociating the cellulose chains. However, it is not clear which of these factors and under what conditions should be improved in order to obtain a more effective solvent. To this end, a newly-developed phenomenological model has been applied to assess the controlling mechanism of cellulose dissolution. Among the findings, the cellulose fibers remain crystalline almost to the end of the dissolution process for decrystallization-controlled kinetics. In such solvents, decreasing the fiber crystallinity, e.g., via pretreatment, would result in a considerable increase in the dissolution rate. Such insights improve the understanding of cellulose dissolution and facilitate the selection of more efficient solvents and processing conditions for biomass. Specific examples of solvents are provided where dissolution is limited due to decrystallization or disentanglement.


Assuntos
Celulose/química , Solventes/química , Biomassa , Cristalização , Difusão , Cinética , Modelos Teóricos , Solubilidade , Fatores de Tempo
13.
Langmuir ; 30(46): 13754-64, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25126838

RESUMO

Cyclodextrins (CDs) are known to bind surfactant molecules below the surfactant critical micelle concentration (CMC); however, interactions of CDs with surfactant micelles (above the CMC) are not well understood. In particular, direct structural evidence of the location of CDs in the different subphases found in micellar solutions is lacking. We have utilized small-angle neutron scattering (SANS) with contrast matching to probe the localization of α-cyclodextrin (α-CD) and 2-hydroxypropyl-ß-cyclodextrin (HPß-CD) in sodium dodecyl sulfate (SDS) micelles in aqueous (D2O) solutions. SANS data from solutions containing either hydrogenated or deuterated surfactants were analyzed by considering three different scenarios pertaining to the localization of cyclodextrin, either all in solution or some in the micelle shell or some in the micelle core, and were simultaneously fitted using the core-shell prolate ellipsoid form factor and the Hansen-Hayter-based structure factor. The scenario that considered a fraction of CD to localize in the micelle core well described the SANS data from both hydrogenated and deuterated SDS-CD-D2O solutions, while the other two scenarios did not. Among the various structural and interaction parameters obtained from this analysis, it emerged that the micelle core consisted of up to ∼10% HPß-CD or ∼16% α-CD with respect to the total number of molecules (surfactants and CDs) present in the micelle at 25 mM SDS, and up to 14% HPß-CD or 28% α-CD at 50 mM SDS. This is the first study that provides direct evidence on the location of cyclodextrin in the core of surfactant micelles. An improved understanding of CD interactions with surfactants and lipids would enable better strategies for drug encapsulation and delivery with CDs.

14.
J Phys Chem B ; 118(36): 10725-39, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25014246

RESUMO

Aqueous formulations containing polymers and surfactants find several applications in pharmaceutics, coatings, inks, and home products. The association between polymers and surfactants contributes greatly to the function of these complex fluids, however, the effects of polar organic solvents, ubiquitous in formulations, remain mostly unexplored. We have analyzed small angle neutron scattering (SANS) data to determine the conformation of a "model" nonionic polymer, poly(ethylene oxide) (PEO), in aqueous solutions as affected by the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), and subsequent addition of short-chain alcohol (ethanol or 2-propanol). PEO chains (MW = 90,000) are Gaussian in dilute aqueous solutions, but become polyelectrolyte-like upon the addition of 30 mM SDS, with about 6 SDS micelles bound to each PEO chain. Micelles associated with polymer are similar in structure and interactions to micelles that form in aqueous solutions in the absence of polymer. Addition of alcohol alters both the polymer and micelle structure and interactions, leads to detachment of micelles from the polymer, and the PEO chains regain their Gaussian conformation. 2-Propanol is more effective than ethanol in influencing the polymer conformation and the properties of SDS micelles in aqueous solutions, either in the presence or in the absence of PEO. This study contributes fundamental insights on polymer and surfactant organization in solution, as well as new, quantitative information on systems that are widely used in practice.

15.
J Colloid Interface Sci ; 397: 1-8, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23453483

RESUMO

We investigate the role of three polar organic solvents (dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), and glycerol) on the interfacial behavior of Pluronic P105 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers on protonated silica nanoparticles in an aqueous dispersion. The polymer adsorption and self-assembly have been assessed from critical surface micelle concentration (csmc, measured by pyrene fluorescence spectroscopy) and adsorbed layer thickness (measured by capillary viscometry) data. Above its csmc, PEO-PPO-PEO block copolymers form hydrophobic domains on the nanoparticle surface. Below a critical concentration in water (known as critical displacer concentration, cdc), organic solvents act as displacers (molecules that can displace adsorbed polymer from a solid surface). The critical displacer concentration is obtained from the csmc and the polymer adsorbed layer thickness data. The cdc is found to be dependent on both the amount of nanoparticles present in the system as well as the nature of the displacer. Below the cdc, the csmc increases and the adsorbed polymer layer thickness decreases with increasing organic solvent concentration. Interfacial free energy calculations suggest that DMF, DMSO, and glycerol can adsorb onto the silica particles by displacing adsorbed PEO. These calculations are consistent with the experimental results in that, as a displacer, glycerol is the most effective and DMF is the least effective. Above the cdc, the influence of glycerol or DMSO on csmc is opposite to that of DMF which is attributed to the cosolvent effect.

16.
ACS Macro Lett ; 1(1): 52-56, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578452

RESUMO

Well-defined double-brush copolymers with each graft site carrying a polystyrene (PSt) graft and a polylactide (PLA) graft were synthesized by simultaneous reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) processes, followed by ring-opening metathesis polymerization (ROMP) "grafting through" of the resulting diblock macromonomer (MM). Their Janus-type morphologies were detected by transmission electron microscopy (TEM) imaging after thermal annealing to facilitate the intramolecular self-assembly of PSt and PLA grafts. This finding provides critical evidence to verify double-brush copolymers as Janus nanomaterials.

17.
Chem Commun (Camb) ; 47(42): 11697-9, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21952410

RESUMO

Polyelectrolyte nanocages were synthesized by interfacial cross-linking of monolayers of vinyl-functionalized surfactant molecules adsorbed by crystallized miniemulsion droplets. The monolayer-thick shell of these nanocages was confirmed by AFM analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...