Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol Ther ; 26(6): 562-574, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34264787

RESUMO

While ischemia itself can kill heart muscle, much of the infarction after a transient period of coronary artery occlusion has been found to result from injury during reperfusion. Here we review the role of inflammation and possible pyroptosis in myocardial reperfusion injury. Current evidence suggests pyroptosis's contribution to infarction may be considerable. Pyroptosis occurs when inflammasomes activate caspases that in turn cleave off an N-terminal fragment of gasdermin D. This active fragment makes large pores in the cell membrane thus killing the cell. Inhibition of inflammation enhances cardiac tolerance to ischemia and reperfusion injury. Stimulation of the purinergic P2X7 receptor and the ß-adrenergic receptor and activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) by toll-like receptor (TLR) agonists are all known to contribute to ischemia/reperfusion (I/R) cardiac injury through inflammation, potentially by pyroptosis. In contrast, stimulation of the cannabinoid CB2 receptor reduces I/R cardiac injury and inhibits this pathway. MicroRNAs, Akt, the phosphate and tension homology deleted on chromosome 10 protein (PTEN), pyruvate dehydrogenase and sirtuin-1 reportedly modulate inflammation in cardiomyocytes during I/R. Cryopyrin and caspase-1/4 inhibitors are reported to increase cardiac tolerance to ischemic and reperfusion cardiac injury, presumably by suppressing inflammasome-dependent inflammation. The ambiguity surrounding the role of pyroptosis in reperfusion injury arises because caspase-1 also activates cytotoxic interleukins and proteolytically degrades a surprisingly large number of cytosolic enzymes in addition to activating gasdermin D.


Assuntos
Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Piroptose , Animais , Inibidores de Caspase/farmacologia , Humanos , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Ratos
2.
Eur J Pharmacol ; 907: 174302, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217713

RESUMO

Coronary artery occlusion (45 min) and reperfusion (2 h) was performed in rats anesthetized with α-chloralose. Opioid receptor agonists were administered intravenously 5 min before reperfusion, while opioid receptor antagonists were administered 10 min before reperfusion. The non-selective opioid δ-receptor agonist DADLE at a dose of 0.088 mg/kg had no effect the infarct size/area at risk ratio. The selective opioid δ-receptor agonist BW373 was administered at a dose of 1 mg/kg. This opioid at a dose of 1 mg/kg reduced infarct size. The selective opioid δ1-receptor agonist DPDPE at a dose of 0.1 mg/kg and 0.969 mg/kg did not affect infarct size. The selective opioid δ2-receptor agonist deltorphin II at a dose of 0.12 mg/kg reduced infarct size by one half. The opioid δ-receptor agonist p-Cl-Phe-DPDPE was administered at a dose of 0.105 mg/kg and 1.02 mg/kg. This opioid at a dose of 1.02 mg/kg reduced infarct size. The universal opioid receptor antagonists, naltrexone and naloxone methiodide acting on peripheral opioid receptor, as well as the selective opioid δ-receptor antagonist TIIP[ψ], the selective opioid δ2-receptor antagonist naltriben eliminated the infarct limiting effect of deltorphin II. The selective opioid κ receptor antagonist nor-binaltorphimine, the selective opioid µ receptor antagonist CTAP, and the selective opioid δ1-receptor antagonist BNTX did not abolish the protective effect of deltorphin II. Deltorphin II exhibited the most pronounced cardioprotective effect during reperfusion. These studies clearly indicate that the activation of opioid δ2-receptor located in cardiomyocytes increases the resistance of the heart to reperfusion injury.


Assuntos
Receptores Opioides delta , Animais , Antagonistas de Entorpecentes , Ratos , Receptores Opioides mu
3.
J Cardiovasc Pharmacol Ther ; 26(2): 131-148, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32840121

RESUMO

In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3ß. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-ß1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Peptídeos Natriuréticos/farmacologia , Animais , Fator Natriurético Atrial , Modelos Animais de Doenças , Humanos , Isquemia , Canais KATP/metabolismo , Camundongos , Peptídeos Natriuréticos/metabolismo , Proteínas Quinases/metabolismo , Ratos
4.
Curr Cardiol Rev ; 17(4): e230421186874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33059566

RESUMO

There is considerable evidence that autophagy in cardiomyocytes is activated by hypoxia/ reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Besides the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules, including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose of this review was to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Assuntos
Traumatismo por Reperfusão , Autofagia , Humanos , Sulfeto de Hidrogênio , Isquemia , Miócitos Cardíacos , Óxido Nítrico , Espécies Reativas de Oxigênio
5.
Gen Physiol Biophys ; 38(3): 245-251, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31184311

RESUMO

We have established that the continuous cold exposure (CCE, 4°C, 4 weeks) causes cold adaptation, increases systolic blood pressure, exerts infarct-limiting effect during coronary artery occlusion (45 min) and reperfusion (2 h). The CCE increases adrenal weight, heart weight and triiodothyronine (T3) level but does not change thymus, spleen weight, serum cortisol, corticosterone and thyroxin (T4) levels. The long-term (4°C, 8 h/day, 4 weeks) intermittent cold exposure (LICE) induces adaptation to the cold and increases T4 level. The brief (4°C, 1.5 h/day, 4 weeks) intermittent cold exposure (BICE) also evokes adaptation to the cold but had no effect on the blood pressure, the cardiac tolerance to ischemia/reperfusion, and does not change thymus, spleen weight, serum cortisol, corticosterone, T3 and T4 levels.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Glucocorticoides/sangue , Traumatismo por Reperfusão/prevenção & controle , Hormônios Tireóideos/sangue
6.
J Cardiovasc Pharmacol Ther ; 24(5): 403-421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035796

RESUMO

A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase ß, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.


Assuntos
Precondicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Animais , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
7.
Curr Cardiol Rev ; 15(3): 177-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30813880

RESUMO

The hypothetical trigger of remote postconditioning (RPost) of the heart is the highmolecular weight hydrophobic peptide(s). Nitric oxide and adenosine serve as intermediaries between the peptide and intracellular structures. The role of the autonomic nervous system in RPost requires further study. In signaling mechanism RPost, kinases are involved: protein kinase C, PI3, Akt, JAK. The hypothetical end effector of RPost is aldehyde dehydrogenase-2, the transcription factors STAT, Nrf2, and also the BKCa channel.


Assuntos
Coração/fisiopatologia , Isquemia/fisiopatologia , Pós-Condicionamento Isquêmico/métodos , Miocárdio/metabolismo , Feminino , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Transdução de Sinais
8.
Gen Physiol Biophys ; 37(5): 537-547, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30307404

RESUMO

It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. It was performed coronary artery occlusion (20 min) and reperfusion (3 h) in Wistar rats. CCNH promoted a decrease in the infarct size/area at risk ratio in 2-fold. CCNH promoted an increase in the nitrite/nitrate levels in blood serum and myocardium. Pretreatment with protein kinase C (PKC) inhibitor chelerythrine, NO-synthase (NOS) inhibitor L-NAME, iNOS inhibitor S-methylisothiourea, KATP channel blocker glibenclamide, mitoKATP channel blocker 5-hydroxydecanoic acid abolished the infarct-reducing effect of CCNH. The non-selective tyrosine kinase inhibitor genistein attenuated but not eliminated infarct-sparing effect of CCNH. The nNOS inhibitor 7-nitroindazole, sarcKATP channel blocker HMR 1098, MPT pore inhibitor atractyloside, PI3 kinase inhibitor wortmannin did not reverse infarct-limiting effect of CCNH. It was concluded that infarct-reducing effect of CCNH is mediated via PKC, iNOS activation and mitoKATP channel opening. While nNOS, PI3 kinase, sarcKATP channel, MPT pore are not involved in the development of CCNH-induced cardiac tolerance to impact of ischemia-reperfusion.


Assuntos
Canais KATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miocárdio/citologia , Óxido Nítrico Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Arritmias Cardíacas/patologia , Hipóxia Celular , Hemodinâmica , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/patologia , Miocárdio/patologia , Nitratos/sangue , Nitritos/sangue , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...