Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(25): 256001, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181374

RESUMO

In this Letter, we manipulate the phase shift of a Josephson junction using a parallel double quantum dot (QD). By employing a superconducting quantum interference device, we determine how orbital hybridization and detuning affect the current-phase relation in the Coulomb blockade regime. For weak hybridization between the QDs, we find π junction characteristics if at least one QD has an unpaired electron. Notably the critical current is higher when both QDs have an odd electron occupation. By increasing the inter-QD hybridization the critical current is reduced, until eventually a π-0 transition occurs. A similar transition appears when detuning the QD levels at finite hybridization. Based on a zero-bandwidth model, we argue that both cases of phase-shift transitions can be understood considering an increased weight of states with a double occupancy in the ground state and with the Cooper pair transport dominated by local Andreev reflection.

2.
Nano Lett ; 22(1): 334-339, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910870

RESUMO

We experimentally investigate the properties of one-dimensional quantum rings that form near the surface of nanowire quantum dots. In agreement with theoretical predictions, we observe the appearance of forbidden gaps in the evolution of states in a magnetic field as the symmetry of a quantum ring is reduced. For a twofold symmetry, our experiments confirm that orbital states are grouped pairwise. Here, a π-phase shift can be introduced in the Aharonov-Bohm relation by controlling the relative orbital parity using an electric field. Studying rings with higher symmetry, we note exceptionally large orbital contributions to the effective g-factor (up to 300), which are many times higher than those previously reported. These findings show that the properties of a phase-coherent system can be significantly altered by the nanostructure symmetry and its interplay with wave function parity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...