Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380509

RESUMO

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Carcinogênese , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Sarcoma de Kaposi/genética , Latência Viral/genética , Replicação Viral
2.
Sci Rep ; 14(1): 2797, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307876

RESUMO

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Camundongos , Perfilação da Expressão Gênica , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , RNA Interferente Pequeno
3.
Obesity (Silver Spring) ; 31(12): 2986-2997, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746932

RESUMO

OBJECTIVE: In obesity, adipocyte hypertrophy is detrimental to health, but its' interrelation with fibrosis in the visceral adipose tissue (VAT) depot remains unclear. Because VAT is less accessible via biopsy, biomarkers for VAT quality are needed. The authors hypothesized that VAT adipocyte size and fibrosis are interrelated and can be estimated by circulating microRNAs (circ-miRNAs), contributing to subphenotyping obesity. METHODS: Adipocyte size and AT fibrosis were estimated in n = 43 participants (BMI ≥ 30 kg/m2 ). Circ-miRNAs were sequenced (Next Generation Sequencing). RESULTS: Participants with above- versus below-median VAT adipocyte area exhibited metabolic dysfunction but lower total and pericellular fibrosis. VAT adipocyte size remained associated with metabolic dysfunction even when controlling for BMI or VAT fibrosis in the entire cohort, as in matched-pairs subanalyses. Next Generation Sequencing uncovered 22 and 6 circ-miRNAs associated with VAT adipocyte size and fibrosis, respectively, with miRNA-130b-3p common to both analyses. The combination of miRNA-130b-3p + miR-150-5p + high-density lipoprotein cholesterol discriminated among those with large versus small VAT adipocytes (receiver operating characteristic-area under the curve: 0.872 [95% CI: 0.747-0.996]), whereas miRNA-130b-3p + miRNA-15a-5p + high-density lipoprotein cholesterol discriminated among those with low and high fibrosis (receiver operating characteristic-area under the curve: 0.823 [95% CI: 0.676-0.97]). CONCLUSIONS: These findings suggest that VAT adipocyte size and fibrosis are inversely correlated in obesity and can be estimated by distinct circ-miRNAs, providing a potential tool to subphenotype obesity via a liquid biopsy-like approach to assess VAT health in nonsurgical patients.


Assuntos
MicroRNAs , Obesidade , Humanos , Obesidade/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos/metabolismo , Fibrose , Lipoproteínas HDL/metabolismo , Colesterol
4.
Front Genome Ed ; 5: 1034720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077890

RESUMO

The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the "humanized" fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.

5.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768453

RESUMO

4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.


Assuntos
Himecromona , Transcriptoma , Camundongos , Animais , Himecromona/farmacologia , Fígado/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Metabolismo dos Lipídeos
6.
ACS Appl Mater Interfaces ; 14(46): 51579-51592, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367877

RESUMO

A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 µm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 µg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 µm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Cápsulas , Macrófagos , Rastreamento de Células
7.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010574

RESUMO

Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.7 monocyte/macrophage cell line and mouse-bone-marrow-derived macrophages (BMDMs). The impact of IRF5 knockdown was most pronounced, curtailing the expression of other inflammatory mediators such as IL-6 and NOS2, especially in M1-polarized macrophages. Contrary to IRF5, EGR2 knockdown potentiated M1-associated markers while altogether abolishing M2 marker expression, which is indicative of the principal role of EGR2 in the maintenance of alternative phenotypes. IRF3 knockdown suppressed M1 polarization but upregulated Arg 1, a canonical marker of alternative polarization in M1 macrophages. As anticipated, the knockdown of TLR4 also attenuated the M1 phenotype but, akin to IRF3, significantly induced Arginase 1 in M0 and M1, driving the phenotype towards M2. This study validates RNAi as a viable option for the alteration and maintenance of macrophage phenotypes.


Assuntos
Ativação de Macrófagos , Receptor 4 Toll-Like , Animais , Biomarcadores/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Glycobiology ; 31(8): 959-974, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978736

RESUMO

Elevated plasma levels of hyaluronic acid (HA) is a disease marker in liver pathology and other inflammatory disorders. Inhibition of HA synthesis with coumarin 4-methylumbelliferone (4MU) has a beneficial effect in animal models of fibrosis, inflammation, cancer and metabolic syndrome. 4MU is an active compound of approved choleretic drug hymecromone with low bioavailability and a broad spectrum of action. New, more specific and efficient inhibitors of hyaluronan synthases (HAS) are required. We have tested several newly synthesized coumarin compounds and commercial chitin synthesis inhibitors to inhibit HA production in cell culture assay. Coumarin derivative compound VII (10'-methyl-6'-phenyl-3'H-spiro[piperidine-4,2'-pyrano[3,2-g]chromene]-4',8'-dione) demonstrated inhibition of HA secretion by NIH3T3 cells with the half-maximal inhibitory concentration (IC50) = 1.69 ± 0.75 µΜ superior to 4MU (IC50 = 8.68 ± 1.6 µΜ). Inhibitors of chitin synthesis, etoxazole, buprofezin, triflumuron, reduced HA deposition with IC50 of 4.21 ± 3.82 µΜ, 1.24 ± 0.87 µΜ and 1.48 ± 1.44 µΜ, respectively. Etoxazole reduced HA production and prevented collagen fibre formation in the CCl4 liver fibrosis model in mice similar to 4MU. Bioinformatics analysis revealed homology between chitin synthases and HAS enzymes, particularly in the pore-forming domain, containing the proposed site for etoxazole binding.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Quitina , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Camundongos , Células NIH 3T3
9.
Exp Cell Res ; 392(2): 112033, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360435

RESUMO

AAV-delivered microdystrophin genes hold great promise for Duchenne muscular dystrophy (DMD) treatment. It is anticipated that the optimization of engineered dystrophin genes will be required to increase the efficacy and reduce the immunogenicity of transgenic proteins. An in vitro system is required for the efficacy testing of genetically engineered dystrophin genes. We report here on the proof of concept for an in vitro assay based on the assessment of sarcolemma damage after repetitively applied electrical stimuli. The primary cell culture of myoblasts was established from wild-type C57BL/10ScSnJ and dystrophin-deficient mdx mice. The preparation parameters and the differentiation of contractile myotubes were optimized. DAPI and TO-PRO-3 dyes were used to assess myotubular membrane permeability in response to electrical pulse stimulation (EPS). Myotubes derived from mdx mice exhibited a greater increase in membrane damage, as assessed by TO-PRO-3-measured permeability after EPS, than was exhibited by the healthy control myotubes. AAV-DJ particles carrying the microdystrophin gene were used to transduce mdx-derived differentiated myotubes. Microdystrophin delivery ameliorated the disease phenotype and reduced the EPS-induced membrane damage to a level comparable to that of the healthy controls. Thus, the in vitro system was shown to be capable of supporting studies on DMD gene therapy.


Assuntos
Dependovirus/genética , Distrofina/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Mioblastos/patologia , Animais , Diferenciação Celular , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo
10.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847129

RESUMO

4-methylumbelliferone (4MU) is an inhibitor of hyaluronan deposition and an active substance of hymecromone, a choleretic and antispasmodic drug. 4MU reported to be anti-fibrotic in mouse models; however, precise mechanism of action still requires further investigation. Here we describe the cellular and molecular mechanisms of 4MU action on CCl4-induced liver fibrosis in mice using NGS transcriptome, Q-PCR and immunohistochemical analysis. Collagen and hyaluronan deposition were prevented by 4MU. The CCl4 stimulated expression of Col1a and αSMA were reduced, while the expression of the ECM catabolic gene Hyal1 was increased in the presence of 4MU. Bioinformatic analysis identified an activation of TGF-beta and Wnt/beta-catenin signaling pathways, and inhibition of the genes associated with lipid metabolism by CCL4 treatment, while 4MU restored key markers of these pathways to the control level. Immunohistochemical analysis reveals the suppression of hepatic stellate cells (HSCs) transdifferentiation to myofibroblasts by 4MU treatment. The drug affected the localization of HSCs and macrophages in the sites of fibrogenesis. CCl4 treatment induced the expression of FSTL1, which was downregulated by 4MU. Our results support the hypothesis that 4MU alleviates CCl4-induced liver fibrosis by reducing hyaluronan deposition and downregulating FSTL1 expression, accompanied by the suppression of HSC trans-differentiation and altered macrophage localization.


Assuntos
Proteínas Relacionadas à Folistatina/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/biossíntese , Himecromona/farmacologia , Cirrose Hepática , Via de Sinalização Wnt/efeitos dos fármacos , Actinas/biossíntese , Animais , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Intoxicação por Tetracloreto de Carbono/prevenção & controle , Transdiferenciação Celular/efeitos dos fármacos , Feminino , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hialuronoglucosaminidase/biossíntese , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Miofibroblastos/metabolismo , Miofibroblastos/patologia
11.
Cells ; 8(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557916

RESUMO

Second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) triggers Ca2+ release via two-pore channels (TPCs) localized in endolysosomal vesicles. The aim of the present work is to evaluate the role of TPCs in the action of norepinephrine (NE), angiotensin II (AngII), vasopressin (AVP), and 5-hydroxytriptamine (5-HT) on free cytoplasmic calcium concentration ([Ca2+]i) in smooth muscle cells (SMCs) isolated from rat aorta and on aorta contraction. To address this issue, the NAADP structural analogue and inhibitor of TPCs, NED 19, was applied. We have demonstrated a high degree of colocalization of the fluorescent signals of cis-NED 19 and endolysosmal probe LysoTracker in SMCs. Both cis- or trans-NED 19 inhibited the rise of [Ca2+]i in SMCs induced by 100 µM NE by 50-60%. IC50 for cis- and trans-NED 19 were 2.7 and 8.9 µM, respectively. The inhibition by NED 19 stereoisomers of the effects of AngII, AVP, and 5-HT was much weaker. Both forms of NED 19 caused relaxation of aortic rings preconstricted by NE, with relative potency of cis-NED 19 several times higher than that of trans-NED 19. Inhibition by cis-NED 19 of NE-induced contraction was maintained after intensive washing and slowly reversed within an hour of incubation. Cis- and trans-NED 19 did not cause decrease in the force of aorta contraction in response to Ang II and AVP, and only slightly relaxed aorta preconstricted by 5-HT and by KCl. Suppression of TPC1 in SMCs with siRNA caused a 40% decrease in [Ca2+]i in response to NE, whereas siRNA against TPC2 did not change NE calcium signaling. These data suggest that TPC1 is involved in the NE-stimulated [Ca2+]i rise in SMCs. Inhibition of TPC1 activity by NED 19 could be the reason for partial inhibition of aortic rings contraction in response to NE.


Assuntos
Aorta/citologia , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Norepinefrina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Carbolinas/farmacologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Piperazinas/farmacologia , Ratos , Ratos Wistar
12.
Cells ; 8(2)2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813397

RESUMO

In this study, we investigated the effects of NAD(P)H oxidase (NOX) inhibitor VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine) on the histamine-induced elevation of free cytoplasmic calcium concentration ([Ca2+]i) and the secretion of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVECs) and on relaxation of rat aorta in response to histamine. At 10 µM concentration, VAS2870 suppressed the [Ca2+]i rise induced by histamine. Inhibition was not competitive, with IC50 3.64 and 3.22 µM at 1 and 100 µM concentrations of histamine, respectively. There was no inhibition of [Ca2+]i elevation by VAS2870 in HUVECs in response to the agonist of type 1 protease-activated receptor SFLLRN. VAS2870 attenuated histamine-induced secretion of vWF and did not inhibit basal secretion. VAS2870 did not change the degree of histamine-induced relaxation of rat aortic rings constricted by norepinephrine. We suggest that NOX inhibitors might be used as a tool for preventing thrombosis induced by histamine release from mast cells without affecting vasorelaxation.


Assuntos
Benzoxazóis/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Histamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Triazóis/farmacologia , Fator de von Willebrand/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Norepinefrina/farmacologia , Oxirredução , Fragmentos de Peptídeos/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...